Scientists write with nanoparticles using a laser and a bubble

Nanoparticles are extremely small -- less than 100 nanometers in size -- but they can have a big impact on medicine, solar technology, batteries, computing and other industries. Nanoparticles are generally more reactive, stronger and more versatile t...

Light-triggered nanoparticles kill drug-resistant bacteria

Many current attempts at killing drug-resistant "superbugs" amount to racing against time, whether it's improving research technology or developing germ-fighting techniques that are less likely to promote resistance. That's not really an effective l...

Nanoparticle-enhanced metals could radically change cars

Scientists at UCLA have found a new way to inject silicon carbide nanoparticles into a molten alloy of magnesium and zinc, resulting a metal nanocomposite that demonstrates "record levels" of stiffness-to-weight and specific strength, and "superior s...

Princeton crafts a 3D printed bionic ear with super hearing, creepy looks

Princeton crafts a 3D printed bionic ear with super hearing, creepy looks

Scientists have toyed with printing ear implants for ages, but they've usually been more cosmetic than functional. Princeton has just developed a bionic ear that could transcend those mere replacements to offer a full-on upgrade. Rather than seed hydrogel with cells and call it a day, the researchers 3D printed a blend of calf cells, hydrogel and an integrated, coiled antenna made from silver nanoparticles. The frankly spooky project doesn't resemble a natural ear all that closely, but it merges organic and synthetic more gracefully than inserting a chip into an existing implant. It can also expand hearing beyond normal human levels: the experimental version picks up radio waves, for example. Although the ear is just the first step on a long path toward natural-feeling bionics, it already has us wondering if we'll be actively seeking out replacement body parts in the future... not that we're about to go all Van Gogh to get them.

Filed under: , ,

Comments

Via: Phys.org

Source: Nano Letters

USC battery wields silicon nanowires to hold triple the energy, charge in 10 minutes

USC battery wields silicon nanowires to hold triple the energy, charge in 10 minutes

There's no shortage of attempts to build a better battery, usually with a few caveats. USC may have ticked all the right checkboxes with its latest discovery, however. Its use of porous, flexible silicon nanowires for the anodes in a lithium-ion battery delivers the high capacity, fast recharging and low costs that come with silicon, but without the fragility of earlier attempts relying on simpler silicon plates. In practice, the battery could deliver the best of all worlds. Triple the capacity of today's batteries? Full recharges in 10 minutes? More than 2,000 charging cycles? Check. It all sounds a bit fantastical, but USC does see real-world use on the horizon. Researchers estimate that there should be products with silicon-equipped lithium-ion packs inside of two to three years, which isn't long to wait if the invention saves us from constantly hunting for the nearest wall outlet.

Filed under:

Comments

Via: Gizmodo

Source: USC

UCSB sensor sniffs explosives through microfluidics, might replace Rover at the airport (video)

UCSB sensor sniffs explosives through microfluidics, might replace Rover at the airport video

We're sure that most sniffer dogs would rather be playing fetch than hunting for bombs in luggage. If UC Santa Barbara has its way with a new sensor, those canines will have a lot more free time on their hands. The device manages a snout-like sensitivity by concentrating molecules in microfluidic channels whose nanoparticles boost any spectral signatures when they're hit by a laser spectrometer. Although the main technology fits into a small chip, it can detect vapors from explosives and other materials at a level of one part per billion or better; that's enough to put those pups out of work. To that end, the university is very much bent on commercializing its efforts and has already licensed the method to SpectraFluidics. We may see the technology first on the battlefield when the research involves funding from DARPA and the US Army, but it's no big stretch to imagine the sensor checking for drugs and explosives at the airport -- without ever needing a kibble break.

Continue reading UCSB sensor sniffs explosives through microfluidics, might replace Rover at the airport (video)

Filed under: ,

Comments

Via: Gizmag

Source: UCSB

New ‘nano-code’ could help fight banknote forgery by embedding invisible QR-style ciphers

New 'nano-code' could help fight banknote forgery by embedding invisible QR-style ciphers

We've all seen (and probably used) QR codes at some point. And, handy as they are for quick linking to apps, or value added content etc, there's usually not much else going on. Unless you're one of the team at South Dakota School of Mines and Technology, that is, who have created a tiny version of the quadrilateral-codes that could be used to spot counterfeit money. The invention uses nanoparticles combined with blue and green fluorescent ink, and can be sprayed onto surfaces such as glass, plastic film, or of course, pictures of American presidents. The nano-code remains invisible until placed under a near-infrared laser, making it ideal for helping spot legit bank notes. The creators say they have done significant wear tests, which suggest that it's durable, but they also accept that eventually criminal technology could eventually catch up, in the constant cat and mouse game between mandated money producers and forgers. Whether there'd be links to the Benjamin Franklin Wiki page is unclear.

Continue reading New 'nano-code' could help fight banknote forgery by embedding invisible QR-style ciphers

Filed under: ,

New 'nano-code' could help fight banknote forgery by embedding invisible QR-style ciphers originally appeared on Engadget on Thu, 13 Sep 2012 00:57:00 EDT. Please see our terms for use of feeds.

Permalink Ubergizmo  |   | Email this | Comments