AI-guided material changes could lead to diamond CPUs

Scientists know that you can dramatically alter a crystalline material's properties by applying a bit of strain to it, but finding the right strain is another matter when there are virtually limitless possibilities. There may a straightforward solut...

Matrix adds a solar cell to its battery-free smartwatch

In announcing the third in its range of battery-free smartwatches, Matrix Industries is going where few others have gone before. Whereas the first two PowerWatches relied upon thermocouples to generate power, the new model has two different ways to g...

ICYMI: A soft robot sleeve to keep your heart going

Today on In Case You Missed It: A soft robotic device made by Harvard and Boston Children's Hospital researchers has been tested on pigs and so far, seems quite promising in treating heart disease. The robotic heart wraps around parts of existi...

Solar beads can make some very cool lamps and flashlights

Conventional solar panels aren't exactly the prettiest objects on the planet, which is why companies like Tesla, SRS Energy and SunTegra have been focusing on blending this technology into roof tiles. As for those who don't have a roof or land to spa...

Stanford researchers create ‘world’s first’ all-carbon solar cell, do it on the cheap

Stanford researchers create 'world's first' all-carbon solar cell, do it on the cheap

Harnessing the awesome power of the Sun isn't just dependent on the efficiency of solar cells, but also on making them affordable. Current techniques aren't exactly cheap, but researchers from Stanford University think they've made a bit of a breakthrough by producing a relatively inexpensive photovoltaic cell using nothing but carbon. We're sure other scientists might disagree with the 'world's first' claim, but those at Stanford think it's a matter of language, and that these other pretenders are "referring to just the active layer in the middle, not the electrodes." The team selected a trio of carbon types to use in their cell: a mixture of nanotubes and buckyballs make up the light-absorbing layer, while graphene is being utilized for the electrodes.

The carbon amalgam can be applied from solution using simple methods, meaning the flexible cells could be used to coat surfaces, although you won't be seeing it smeared over anything too soon. The prototype only touts a "laboratory efficiency of less than 1 percent," so it can't compete with traditional solar cells just yet. Also, it only absorbs a sliver of the light spectrum, but the researchers are looking to other forms of the wonder element which could increase that range. They are hoping that improving the structure of the cells will help to boost their efficiency, too. They might never generate the most energy, but the all-carbon cells can remain stable under extreme conditions, meaning they could find their calling in harsh environments where brawn is a little more important than status, or looks.

Filed under: ,

Stanford researchers create 'world's first' all-carbon solar cell, do it on the cheap originally appeared on Engadget on Thu, 01 Nov 2012 19:12:00 EDT. Please see our terms for use of feeds.

Permalink TechEye  |  sourceStanford News  | Email this | Comments

NC State nanoflowers can boost battery and solar cell capacity, make great prom accessories

NC State crafts nanoflowers that boost battery and solar cell capacity, would make great prom accessories

We see a lot of sleek-looking technology pass through our doors, but it's rare that the inventions could be called beautiful by those who aren't immersed in the gadget world. We'd venture that North Carolina State University might have crossed the divide by creating an energy storage technology that's both practical and genuinely pretty. Its technology vaporizes germanium sulfide and cools it into 20-30 nanometer layers that, as they're combined, turn into nanoflowers: elegant structures that might look like the carnation on a prom dress or tuxedo, but are really energy storage cells with much more capacity than traditional cells occupying the same area. The floral patterns could lead to longer-lived supercapacitors and lithium-ion batteries, and the germanium sulfide is both cheap and clean enough that it could lead to very efficient solar cells that are more environmentally responsible. As always, there's no definite timetable for when (and if) NC State's technology might be commercialized -- so call someone's bluff if they promise you a nanoflower bouquet.

Filed under:

NC State nanoflowers can boost battery and solar cell capacity, make great prom accessories originally appeared on Engadget on Thu, 11 Oct 2012 20:37:00 EDT. Please see our terms for use of feeds.

Permalink North Carolina State University  |  sourceACS Publications  | Email this | Comments

Fraunhofer black silicon could catch more energy from infrared light, go green with sulfur

Fraunhofer black silicon could catch more energy from infrared light, go green with sulfur

Generating solar power from the infrared spectrum, or even nearby frequencies, has proven difficult in spite of a quarter of the Sun's energy passing through those wavelengths. The Fraunhofer Institute for Telecommunications may have jumped that hurdle to efficiency through sulfur -- one of the very materials that solar energy often helps eliminate. By irradiating ordinary silicon through femtosecond-level laser pulses within a sulfuric atmosphere, the technique melds sulfur with silicon and makes it easier for infrared light electrons to build into the frenzy needed for conducting electricity. The black-tinted silicon that results from the process is still in the early stages and needs improvements to automation and refinement to become a real product, but there's every intention of making that happen: Fraunhofer plans a spinoff to market finished laser systems for solar cell builders who want their own black silicon. If all goes well, the darker shade of solar panels could lead to a brighter future for clean energy.

Filed under: ,

Fraunhofer black silicon could catch more energy from infrared light, go green with sulfur originally appeared on Engadget on Thu, 04 Oct 2012 05:32:00 EDT. Please see our terms for use of feeds.

Permalink Gizmag  |  sourceFraunhofer  | Email this | Comments

Spherical glass lens concentrates sunlight by up to 10,000 times, boosts solar cell efficiency

Spherical glass lens concentrates sunlight by up to 10,000 times, boosts solar cell efficiency

Eking out more power from solar cells is an ongoing challenge for scientists, and now architect André Broessel has developed a spherical glass energy generator that's said to improve efficiency by 35 percent. Acting as a lens, the rig's large water-filled orb concentrates diffused daylight or moonlight onto a solar cell with the help of optical tracking to harvest electricity. In certain configurations, the apparatus can be used for solar thermal energy generation and even water heating. In addition to the oversized globe, Broessel has cooked up a mobile version of the contraption for domestic use and an array of much smaller ball lenses with dual-axis tracking that offers 40 percent efficiency. These devices aren't the first venture into concentrated photovoltaics, but they are likely among the most visually impressive. If the Barcelona-based architect's vision of the future comes true, you'll be seeing these marbles incorporated into buildings and serving as standalone units. Hit the source links below for the picture spread of prototypes and renders.

Filed under:

Spherical glass lens concentrates sunlight by up to 10,000 times, boosts solar cell efficiency originally appeared on Engadget on Tue, 28 Aug 2012 09:22:00 EDT. Please see our terms for use of feeds.

Permalink Gizmodo  |  sourceDesignboom, Rawlemon  | Email this | Comments