IBM alliance sets efficiency record for solar power cells using common materials

IBM alliance sets efficiency record for solar power cells using common materials

There have been more than a few solar power efficiency records set in the past few months, let alone years. What makes IBM, DelSolar, Solar Frontier and Tokyo Ohka Kogyo think they can just waltz in and claim a record of their own? By using more commonplace elements in the periodic table, that's how. The partnership's new photovoltaic cell based on copper, zinc and tin (CZTS for short) can convert light rays to electric power with a 11.1 percent efficiency rate -- still nothing to upset traditional silicon power, but a large 10 percent more efficient than anything else in the class. In its early form, CZTS can already be manufactured through ink printing and could be produced in quantities equivalent to about 500 gigawatts of power per year, or five times more than some of the next-closest alternatives. The group wants to improve CZTS' efficiency over the course of the next several years, ideally reaching the point where it's useful as a truly cheap, ubiquitous source of power. We're looking forward to the day when there's a little slice of solar energy in just about everything, hopefully including a few more hybrid cars and private aircraft.

Filed under:

IBM alliance sets efficiency record for solar power cells using common materials originally appeared on Engadget on Mon, 20 Aug 2012 15:27:00 EDT. Please see our terms for use of feeds.

Permalink MIT Technology Review  |  sourceIBM Research  | Email this | Comments

Copper-nickel nanowires from Duke University could make ubiquitous printable circuits

Nanowires

Nanowires, although they're building steam, still have to overcome the not-so-small problem of cost -- they often have to use indium tin oxide that's not just expensive, but fragile. Duke University has developed copper-nanowire films that could remedy this in style. The choice of material is both a hundred times less expensive to make than indium and is much more durable. It's flexible, too: if layered on as a coating, the nanowires would make for considerably more viable wearable electronics that won't snap under heavy stress. The catch, as you might suspect, stems from the copper itself, which doesn't conduct as much electricity as indium. The nickel will keep your copper electronics from oxidizing faster than the Statue of Liberty, however. Any practical use could be years away, but further successes from Duke could quickly see printable electronics hit the mainstream power and power our dreams of flexible displays.

Copper-nickel nanowires from Duke University could make ubiquitous printable circuits originally appeared on Engadget on Thu, 31 May 2012 04:24:00 EDT. Please see our terms for use of feeds.

Permalink PhysOrg  |  sourceACS Publications  | Email this | Comments