2023 was a big year for CRISPR-based gene editing but challenges remain

2023 was an important year for patients with sickle cell disease. Prior to CRISPR, the only cure for the life-long ailment was a bone marrow transplant, which is notoriously dangerous and costly. This month, the FDA approved Vertex’s “Casgevy,” a CRISPR-based therapy for the treatment of sickle cell disease in patients 12 and older. The landmark approval made the therapeutic the first genetically edited therapy to reach the general market.

Casgevy, which also received the greenlight from regulators in the UK for another blood disorder called beta thalassemia, works by being administered in a single-infusion of genetically modified stem cells to a patient. Clinical study participants that took Casgevy were free from symptoms associated with sickle cell disease, like periodic episodes of extreme pain due to blocked blood flow through vessels, for up to a year.

CRISPR, which modifies precise regions of a human’s DNA strands, was once thought to be a far off scientific innovation. Human cells were first modified using CRISPR in clinical trials in China back in 2016. Less than a decade later, these landmark approvals have set the stage for future nods by regulators for other CRISPR-based therapies that can treat things like HIV, cancers and high blood pressure. “Gene therapy holds the promise of delivering more targeted and effective treatments,” Nicole Verdun, director of the Office of Therapeutic Products within the FDA’s Center for Biologics Evaluation and Research said in a recent press release.

The Vertex Pharmaceuticals logo is seen, Friday, March 17, 2023, in Boston. (AP Photo/Michael Dwyer)
ASSOCIATED PRESS

CRISPR-based gene editing can be designed as a therapeutic for a number of diseases. A scientist can either delete, disrupt or insert segments of DNA to treat conditions by either targeting specific genes or engineering new cell therapies. The editing process can occur ex vivo (outside the body), in the same way Casgevy does, or in vivo (inside the body). Using CRISPR, sickle cell patients’ blood stem cells are modified in a lab before they are re-infused via a single-dose infusion as part of a hematopoietic transplant.

Neville Sanjana, a core faculty member at the New York Genome Center and associate professor in the Department of Biology at New York University, runs the Sanjana lab, which develops gene therapies for complex diseases like autism and cancer. “One of the really fundamental characteristics of CRISPR is its programmability,” Sanjana told Engadget. While working at the Zhang lab at the Broad Institute of MIT and Harvard, Sanjana says he helped design the “guide RNA” that became the blueprint for Vertex’s Casgevy. “CRISPR screens can be powerful tools for understanding any disease or genetic trait,” Sanjana said. Right now, he said biomedical folks are focused on applying CRISPR-based therapies for really serious inheritable diseases.

While it does “set a precedent” to have these first CRISPR-based gene therapies out there, it could also mean that regulators and the general public will regard future innovations in the space as “less novel,” Katie Hasson, a researcher with the Center for Genetics and Society (CGS) told Engadget. The CGS is a public interest and social justice organization that is focused on making sure gene editing is developed and distributed for good. Hasson explained, it doesn't mean that because one got approved that all other innovative therapies to come after it will not get as much scrutiny.

Beyond therapeutics, gene editing has very broad applications for the discovery and understanding of diseases. Scientists can use CRISPR to explore the origins of things like cancer and pave paths for therapeutics and incurable diagnoses, but that's not all there is to it. Scientists still need to conduct “considerable experimental research” when it comes to bringing an actual therapeutic to fruition, Sanjana said. “When we focus on therapeutic activity at a particular site in the genome, we need to make sure that there will not be any unintended consequences in other parts of the genome.”

Still, the spotlight will always shine a brighter light on the flashy developments of CRISPR from a therapeutic standpoint. Currently, a new gene editing method is being developed to target specific cells in a process called “cancer shredding“ for difficult-to-treat brain cancer. Scientists have even discovered a pathway to engineer bacteria to discover tumorous cells. However, there are barriers to using CRISPR in clinical practice due to the lack of “safe delivery systems to target the tissues and cells.”

“Maybe by curing one disease, you might give them a different disease — especially if you think of cancer. We call that a secondary malignancy,” Sanjana said. While there is strong reason for concern, one cure creating a pathway for other diseases or cancers is not unique to CRISPR. For example, CAR T cell therapy, which uses an entirely different approach to cell-based gene therapy and is not reflective of CRISPR, is a lifesaving cancer treatment that the FDA discovered can, in certain situations, cause cancer.

“We definitely don't want any unintended consequences. There are bits of the genome that if you edit them by mistake, it's probably no big deal but then there are other genes that are vitally important,” Sanjana said. Direct assessment of “off-target effects” or events in which a gene edit incorrectly edits another point on a DNA strand in vivo is challenging.

The FDA recommends that after a clinical trials’ period of investigatory study looking at the efficacy of a gene editing-based therapy, there needs to be a 15-year long term follow up after product administration. Peter Marks, director of the FDA’s Center for Biologics Evaluation and Research, said that the agency’s approval of Casgevy follows “rigorous evaluations of the scientific and clinical data.” Right now, researchers are focused on improving the precision and accuracy of gene editing and having the proper follow up is absolutely well merited, Sanjana explained. “The process right now is a careful one.”

Hasson believes that the 15-year recommendation is a good start. “I know that there is a big problem overall with pharmaceutical companies actually following through and doing those long term post-market studies.”

That’s where new approaches come into play. Base editing, a CRISPR-derived genome editing method that makes targeted changes to DNA sequences, has been around since 2016. Drugs that use base editing have already made headway in the scientific community. Verve Therapeutics developed a gene edited therapy that can lower cholesterol in patients with a single infusion. At higher doses, Verve said the treatment has the potential to reduce proteins associated with bad cholesterol for 2.5 years. Base editing, like CRISPR, has many potential applications for treatment and discovery. For example, base editing could repair a gene mutation that causes childhood blindness. Researchers at Weill Cornell Medicine also found base editing could help understand what genetic changes influence a patient’s response to cancer therapies.

Base editors use CRISPR to bring another functional element to a specific place in the genome. “But it doesn't matter whether it's CRISPR cutting or base editing… any time you're modifying DNA…you would want to know what the off target effects are and you can bet that the FDA wants to know that too. You're going to need to collect data using standard models like cell culture, or animal models to show there are zero or near zero off-target impacts,” Sanjana said.

CRISPR-based therapies already show high therapeutic potential for conditions beyond sickle cell disease. From blood based treatments, to edited allogeneic immune cells for cancers, there are a number of human clinical trials underway or expected to start next year. Trials for gene-edited therapies that target certain cells for cancer and autoimmune diseases are expected to begin in 2024.

Boston, MA - December 5: The lobby at Crispr Therapeutics. (Photo by Jonathan Wiggs/The Boston Globe via Getty Images)
Boston Globe via Getty Images

It won't be until 2025 before we get a better understanding of how Excision BioTherapeutics’ CRISPR-based therapy works to treat HIV. The application of gene editing as a therapeutic for Alzhiemer’s is still in the early stages, with mice at the forefront of research. Similarly, University College London researchers proved that CRISPR has promise as a potential therapeutic for treatment-resistant forms of childhood epilepsy. In a recent study, a gene edited therapy developed in the lab was shown to reduce seizures in mice.

But the clinical process of getting CRISPR to safely and effectively work as it's intended isn’t the only hurdle. The pricing of CRISPR and related therapies in general will be a huge barrier to access. The Innovative Genomics Institute (IGI), a research group that hopes to advance ethical use of these gene editing in medicine, estimates that the average CRISPR-based therapy can cost between $500,000 and $2 million per patient. The IGI has built out an “Affordability Task Force” to tackle the issue of expanding access to these novel therapies. Vertex’s sickle cell treatment costs a cool $2.2 million per treatment, before hospital costs. David Altshuler, the chief scientific officer at Vertex, told MIT Tech Review that wants to innovate the delivery of the therapeutic and make it more accessible to patients. “I think the goal will be achieved sooner by finding another modality, like a pill that can be distributed much more effectively,” Altshuler said.

“Access is a huge issue and it's a huge equity issue,” the CGS’ Hasson told Engadget. “I think we would also like to look at equity here even more broadly. It's not just about who gets access to the medication once it comes on the market but really how can we prioritize equity in the research that's leading to these treatments.” The US already does a poor job of providing equitable healthcare access as it is, Hasson explained, which is why it's important for organizations like CGS to pose roundtable discussions about implementing guardrails that value ethical considerations. “If you support people having access to healthcare, it should encompass these cutting edge treatments as well.”

This article originally appeared on Engadget at https://www.engadget.com/2023-was-a-big-year-for-crispr-based-gene-editing-but-challenges-remain-160009074.html?src=rss

CRISPR-based gene editing therapy approved by the FDA for the first time

In a landmark decision, the FDA greenlit two new drugs for the treatment of sickle cell disease in patients 12 and older, one of which —Vertex’s drug Casgevy — is the first approved use of genome editing technology CRISPR in the US. Bluebird Bio’s Lyfgenia also is a cell-based gene therapy, however, it uses a different gene modification technique to deliver tweaked stem cells to the patient.

Both approvals cultivate new pathways for the treatment of sickle cell disease, which is an inherited blood disorder that is characterized by red blood cells that can’t properly carry oxygen, which leads to painful vaso-occlusive crises (VOCs) and organ damage. The disease is particularly common among African Americans and, to a lesser extent, among Hispanic Americans. Bone marrow transplants are currently the only cure for sickle cell disease, but they require well-matched donors and often involve complications.

While both drug approvals use gene editing techniques, Casgevy’s CRISPR/Cas9 genome editing works by cutting out or splicing in DNA in select areas. Patients first have blood drawn so that their own stem cells can be isolated and edited with CRISPR. They then undergo a form of chemotherapy to remove some bone marrow cells, so the edited stem cells can be transplanted back in a single infusion.

Both drug approvals are based on studies that evaluated the effectiveness and safety of the novel therapies in clinical patients. With Casgevy, study participants reported that they did not experience “severe VOCs” for at least 12 consecutive months during the 24-month follow-up. Similarly, patients on Lyfgenia did not experience a “pain crisis” for six to 18 months after the therapy.

The FDA's decision comes shortly after UK regulators, as well as the National Health Regulatory Authority in Bahrain both approved Vertex’s Casgevy. The approval for a CRISPR-based treatment creates opportunity for further innovation in the gene editing space — for treatments ranging from cancers to heart diseases to Alzheimer’s. “Gene therapy holds the promise of delivering more targeted and effective treatments, especially for individuals with rare diseases where the current treatment options are limited,” Nicole Verdun, director of the Office of Therapeutic Products at the FDA’s Center for Biologics Evaluation and Research said. Casgevy is still currently under review by the European Medicines Agency.

This article originally appeared on Engadget at https://www.engadget.com/crispr-based-gene-editing-therapy-approved-by-the-fda-for-the-first-time-200726474.html?src=rss

UK authorizes first gene therapy for treating sickle cell disease

In a landmark decision, the UK’s Medicines and Healthcare products Agency (MHRA) approved the use of a gene-editing therapy called Casgevy for patients with sickle cell disease and beta thalassemia — both of which are hereditary disorders related to genetic mutations of the red blood cells. The treatment, manufactured by Vertex, is the first-ever approved therapy that utilizes CRISPR-based gene editing technology to treat eligible patients.

The UK approval of the novel therapy is informed by two previous global clinical trials that indicated the treatment's efficacy. 97 percent of patients using Casgevy were relieved of severe pain associated with the blood disorders for at least 12 months after treatment during the trials. The results suggest that the gene editing treatment could replace the current standard for care. Stem cell therapy and bone marrow transplants are currently the only pathways to cure sickle cell disease and beta thalassemia, however, they involve a lot of risks.

Both sickle cell disease and beta thalassemia are blood disorders characterized by defective red blood cells that can’t carry oxygen, and require patients to get monthly blood transfusions that can be costly and time-consuming. Casgevy works by specifically targeting the genes in the bone marrow stem cells that produce faulty blood cells. For the treatment to work, a patient’s stem cells need to be extracted from their bone marrow, edited in a lab and then re-infused into the patient.

Despite its promising outlook, CRISPR-based therapies may not be easily available to the general public. Gene editing is an expensive endeavor. The Innovative Genomics Institute (IGI) estimates that the average CRISPR-based therapy will cost between $500,000 and $2 million per patient. The IGI has built out an ‘Affordability Task Force’ to tackle the issue of expanding access to these novel therapies.

Aside from costliness, gene editing therapies offer huge promise to innovate treatment pathways for rare conditions including neurodegenerative diseases, cancer and muscular atrophy. More importantly, this landmark approval for Casgevy “opens the door for further applications of CRISPR therapies in the future,” Prof Dame Kay Davies, a scientist from the University of Oxford, said. And new iterations of gene editing technologies may even surpass CRISPR in the future.

Casgevy is still being reviewed by regulatory agencies for safety standards in other countries, including the United States and Saudi Arabia. A marketing application, the first step towards approval for the therapy, was recently validated by the European Medicines Agency.

This article originally appeared on Engadget at https://www.engadget.com/uk-authorizes-first-gene-therapy-for-treating-sickle-cell-disease-184130989.html?src=rss

Scientists genetically engineer bacteria to detect cancer cells

An international team of scientists has developed a new technology that can help detect (or even treat) cancer in hard-to-reach places, such as the colon. The team has published a paper in Science for the technique dubbed CATCH, or cellular assay for targeted, CRISPR-discriminated horizontal gene transfer. For their lab experiments, the scientists used a species of bacterium called Acinetobacter baylyi. This bacterium has the ability to naturally take up free-floating DNA from its surroundings and then integrate it into its own genome, allowing it to produce new protein for growth.  

What the scientists did was engineer A. baylyi bacteria so that they'd contain long sequences of DNA mirroring the DNA found in human cancer cells. These sequences serve as some sort of one-half of a zipper that locks on to captured cancer DNA. For their tests, the scientists focus on the mutated KRAS gene that's commonly found in colorectal tumors. If an A. baylyi bacterium finds a mutated DNA and integrates it into its genome, a linked antibiotic resistance gene also gets activated. That's what the team used to confirm the presence of cancer cells: After all, only bacteria with active antibiotic resistance could grow on culture plates filled with antibiotics. 

While the scientists were successfully able to detect tumor DNA in mice injected with colorectal cancer cells in the lab, the technology is still not ready to be used for actual diagnosis. The team said it's still working on the next steps, including improving the technique's efficiency and evaluating how it performs compared to other diagnostic tests. "The most exciting aspect of cellular healthcare, however, is not in the mere detection of disease. A laboratory can do that," Dan Worthley, one of the study's authors, wrote in The Conversation. In the future, the technology could also be used for targeted biological therapy that can deploy treatment to specific parts of the body based on the presence of certain DNA sequences. 

This article originally appeared on Engadget at https://www.engadget.com/scientists-genetically-engineer-bacteria-to-detect-cancer-cells-114511365.html?src=rss