NASA and DARPA will test nuclear thermal engines for crewed missions to Mars

NASA is going back to an old idea as it tries to get humans to Mars. It is teaming up with the Defense Advanced Research Projects Agency (DARPA) to test a nuclear thermal rocket engine in space with the aim of using the technology for crewed missions to the red planet. The agencies hope to "demonstrate advanced nuclear thermal propulsion technology as soon as 2027," NASA administrator Bill Nelson said. "With the help of this new technology, astronauts could journey to and from deep space faster than ever — a major capability to prepare for crewed missions to Mars."

Under the Demonstration Rocket for Agile Cislunar Operations (DRACO) program, NASA's Space Technology Mission Directorate will take the lead on technical development of the engine, which will be integrated with an experimental spacecraft from DARPA. NASA says that nuclear thermal propulsion (NTP) could allow spacecraft to travel faster, which could reduce the volume of supplies needed to carry out a long mission. An NTD engine could also free up space for more science equipment and extra power for instrumentation and communication.

As far back as the 1940s, scientists started speculating about the possibility of using nuclear energy to power spaceflight. The US conducted ground experiments on that front starting in the '50s. Budget cutbacks and changing priorities (such as a focus on the Space Shuttle program) led to NASA abandoning the project at the end of 1972 before it carried out any test flights.

There are, of course, risks involved with NTP engines, such as the possible dispersal of radioactive material in the environment should a failure occur in the atmosphere or orbit. Nevertheless, NASA says the faster transit times that NTP engines can enable could lower the risk to astronauts — they could reduce travel times to Mars by up to a quarter. Nuclear thermal rockets could be at least three times more efficient than conventional chemical propulsion methods.

NASA is also looking into nuclear energy to power related space exploration efforts. In 2018, it carried out tests of a portable nuclear reactor as part of efforts to develop a system capable of powering a habitat on Mars. Last year, NASA and the Department of Energy selected three contractors to design a fission surface power system that it can test on the Moon. DARPA and the Defense Department have worked on other NTP engine projects over the last few years.

Meanwhile, the US has just approved a small modular nuclear design for the first time. As Gizmodo reports, the design allows for a nuclear facility that's around a third the size of a standard reactor. Each module is capable of producing around 50 megawatts of power. The design, from a company called NuScale, could lower the cost and complexity of building nuclear power plants.

NASA and DARPA will test nuclear thermal engines for crewed missions to Mars

NASA is going back to an old idea as it tries to get humans to Mars. It is teaming up with the Defense Advanced Research Projects Agency (DARPA) to test a nuclear thermal rocket engine in space with the aim of using the technology for crewed missions to the red planet. The agencies hope to "demonstrate advanced nuclear thermal propulsion technology as soon as 2027," NASA administrator Bill Nelson said. "With the help of this new technology, astronauts could journey to and from deep space faster than ever — a major capability to prepare for crewed missions to Mars."

Under the Demonstration Rocket for Agile Cislunar Operations (DRACO) program, NASA's Space Technology Mission Directorate will take the lead on technical development of the engine, which will be integrated with an experimental spacecraft from DARPA. NASA says that nuclear thermal propulsion (NTP) could allow spacecraft to travel faster, which could reduce the volume of supplies needed to carry out a long mission. An NTD engine could also free up space for more science equipment and extra power for instrumentation and communication.

As far back as the 1940s, scientists started speculating about the possibility of using nuclear energy to power spaceflight. The US conducted ground experiments on that front starting in the '50s. Budget cutbacks and changing priorities (such as a focus on the Space Shuttle program) led to NASA abandoning the project at the end of 1972 before it carried out any test flights.

There are, of course, risks involved with NTP engines, such as the possible dispersal of radioactive material in the environment should a failure occur in the atmosphere or orbit. Nevertheless, NASA says the faster transit times that NTP engines can enable could lower the risk to astronauts — they could reduce travel times to Mars by up to a quarter. Nuclear thermal rockets could be at least three times more efficient than conventional chemical propulsion methods.

NASA is also looking into nuclear energy to power related space exploration efforts. In 2018, it carried out tests of a portable nuclear reactor as part of efforts to develop a system capable of powering a habitat on Mars. Last year, NASA and the Department of Energy selected three contractors to design a fission surface power system that it can test on the Moon. DARPA and the Defense Department have worked on other NTP engine projects over the last few years.

Meanwhile, the US has just approved a small modular nuclear design for the first time. As Gizmodo reports, the design allows for a nuclear facility that's around a third the size of a standard reactor. Each module is capable of producing around 50 megawatts of power. The design, from a company called NuScale, could lower the cost and complexity of building nuclear power plants.

Everything NASA is taking to the moon before colonizing Mars

Amid the pantheon of Greek gods, few are more revered than Artemis, Goddess of the hunt, chastity, and the moon; Mistress of Animals, Daughter of Zeus and twin sister to Apollo. Famed for her pledge to never marry, feared from that time she turned the peeping Acteon into a stag and set his own hunting dogs upon him, Artemis has stood as a feminist icon for millenia. It seems only fitting then that NASA names after her a trailblazing mission that will see both the first woman and first person of color set foot on the moon, ahead of humanity’s first off-planet colony.

In fact, NASA has been naming its missions after Zeus’ progeny since the advent of spaceflight. There was the Mercury Program (the Roman spelling of Hermes) in 1958, then Gemini in ‘68 followed by Apollo in ‘73. NASA took a quick break on the naming convention during the Shuttle era but revived it when it formally established the Artemis program in 2017. Working with the European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA), Canadian Space Agency (CSA), and a slew of private corporations, NASA’s goal for Artemis is simple: to re-establish a human foothold on the moon for the first time since 1972, and stay there.

NASA is building a coalition of partnerships with industry, nations and academia that will help us get to the moon quickly and sustainably, together,” then-NASA director Jim Bridenstine said in 2020. “Our work to catalyze the US space economy with public-private partnerships has made it possible to accomplish more than ever before. The budget we need to achieve everything laid out in this plan represents bipartisan support from the Congress.”

“Under the Artemis program, humanity will explore regions of the moon never visited before, uniting people around the unknown, the never seen, and the once impossible,” he continued. “We will return to the moon robotically beginning next year, send astronauts to the surface within four years, and build a long-term presence on the Moon by the end of the decade.”

CAPE CANAVERAL, FLORIDA - NOVEMBER 16: NASA’s Artemis I Space Launch System (SLS) rocket, with the Orion capsule attached, launches at NASA's Kennedy Space Center on November 16, 2022 in Cape Canaveral, Florida. The Artemis I mission will send the uncrewed spacecraft around the moon to test the vehicle's propulsion, navigation and power systems as a precursor to later crewed mission to the lunar surface. (Photo by Red Huber/Getty Images)
Red Huber via Getty Images

Just as Artemis the Goddess grew out of earlier pre-Hellenistic mythology, Artemis the Program was born from the ashes of the earlier Constellation program from the early 2000s which sought to land on the moon by 2020 — specifically the Ares I, Ares V, and Orion Crew Exploration Vehicle that were developed as part of that effort. In 2010, then-President Barack Obama announced that the non-Orion bits of Constellation were being axed and simultaneously called for $6 billion in additional funding as well as the development of a new heavy lift rocket program with a goal of putting humans on Mars by the mid-2030s. This became the NASA Authorization Act of 2010 and formally kicked off development of the Space Launch System, the most powerful rocket NASA has built to date.

The Artemis program was helped further in December of 2017 when former President Donald Trump signed Space Policy Directive 1 (SPD 1). That policy change, “provides for a US-led, integrated program with private sector partners for a human return to the moon, followed by missions to Mars and beyond” and authorized the campaign that would become Artemis two years later. In 2019, then-Vice President Mike Pence announced that the program’s goals were accelerating, the moon landing goal pushed up four years to 2024 though its original goal of Mars in the 2030s remained unchanged.

“The directive I am signing today will refocus America’s space program on human exploration and discovery,” Trump said at the time. “It marks a first step in returning American astronauts to the moon for the first time since 1972, for long-term exploration and use. This time, we will not only plant our flag and leave our footprints — we will establish a foundation for an eventual mission to Mars, and perhaps someday, to many worlds beyond.”

Bang, zoom, straight to the moon

a diagram of how the Artemis missions will approach the moon
NASA

Now, we know NASA can put people on the moon — it’s the keeping them there, alive, that’s the issue. The moon, for all its tide-inducing benefits here on Earth, is generally inhospitable to life, what with its general lack of breathable atmosphere and liquid water, weak gravity, massive temperature swings and razor-sharp, statically-charged dust. The first colonists will need power, heat, atmosphere, potable water — all of which will have to either be brought from Earth or extracted locally from the surrounding regolith.

Complicating matters, the Moon, at 230,000 miles away, is about a thousand times farther than the International Space Station, and getting a crew with everything they need to survive for more than a few days is going to require multiple trips — not just from Earth orbit to the moon but also from lunar orbit down to the surface and back. But high-risk, high-reward logistical nightmares are kind of NASA’s whole deal.

As such, the Artemis program is split between the SLS missions, which will eventually bring the human crew to the moon, and the support missions, which will bring everything else. That includes robotic rovers, the Human Landing System, as well as moonbase and Gateway components along with all of the logistical support and infrastructure that they will require.

Artemis SLS missions

The SLS missions are built around NASA’s new Deep Space Exploration System, which comprises the SLS super heavy-lift launch vehicle, the Orion Spacecraft and the Exploration Ground Systems at Kennedy Space Center (KSC).

Artemis 1 moon sequence
NASA

NASA’s deep space exploration system

The Space Launch System is the single most powerful rocket humanity has built and, given its modular, evolvable design, will likely continue to be for the foreseeable future. Its initial configuration, dubbed Block 1, consists of just the core stage with four RS-25 engines and two, five-segment solid rocket boosters. Once the SLS breaks atmosphere, its Interim Cryogenic Propulsion Stage takes over for in-space propulsion.

Those RS-25’s are the same engines that flew on the Space Shuttle. Aerojet Rocketdyne of Sacramento, California is updating and upgrading 16 of them for use in the modern era — bringing them up to standard for use with the SLS — with a new engine controller, new nozzle insulation, and 512,000 pounds of thrust. Altogether, the core stage will produce 8.8 million pounds of thrust and be capable of pushing 27 metric tons (22,000 sqft) of cargo out to the moon at speeds in excess of 24,500 miles per hour. The Artemis 1 mission that launched in November, as well as the next two Artemis missions, are slash will be powered by Block 1 rockets.

SLS Block builds
NASA

Block 1B rockets will include an Exploration Upper Stage (EUS) built by Boeing and composed of “four RL10C-3 engines that produce almost four times more thrust than the one RL10B-2 engine that powers the ICPS,” per NASA. That additional engine will enable the space agency to haul 38 tons of cargo out of Earth’s gravity well. This updated block will provide NASA a bit more flexibility in its launches. A 1B rocket can be configured to lift the Orion spacecraft or cargo loads into deep space as easily as it can be for hauling large cargoes to the moon or Mars. NASA plans to lift unwieldy portions of the moonbase and Gateway into space with it.

The SLS’ final form (for now) will be Block 2. Standing more than 30 stories tall, weighing the equivalent of 10 fully-loaded 747’s, the block 2 blasting 9.2 million pounds of thrust (20 percent more than the Saturn V) to push 46 metric tons of stuff (taking up as much as 54,000 square feet) into deep space. Once that configuration comes online, NASA expects it to take on much of the heavy lifting (sorry not sorry) in delivering crews and cargo to the moon.

Orion spacecraft

Riding atop the SLS’s multi-ton controlled explosions is the Orion Spacecraft, the first crew capsule designed for deep space exploration in more than a generation. Designed and built with help from the ESA, the Orion sandwiches a four-person crew cabin in between a services module that holds all of the important life support, navigation and propulsion systems, and a Launch Abort System (LAS) that will forcibly eject the crew capsule from the larger launch vehicle if a catastrophic failure occurs during takeoff.

The 50-foot tall LAS weighs 16,000 pounds and is designed to engage within milliseconds of a launch going sideways, lifting the crew cabin away from the rest of the SLS at Mach 1.2 using the 400,000 pounds of thrust produced by the abort motor. Its attitude control motor provides another 7,000 pounds of thrust to keep the capsule upright during escape while the jettison motor will separate the LAS from the cabin once clear, the latter deploying a parachute ahead of its upcoming water landing.

The LAS actually predates Orion by four years. The LAS was first integrated into a Delta IV and flown at the White Sands test facility in New Mexico in 2010 while the (uncrewed) Orion Exploration Flight Test-1 didn’t take off for its four-hour, two orbit jaunt until 2014.

The Orion main cabin is just under 16 feet tall and just over 16 feet in diameter. Its four wing solar array produces 11kW of power and the attached service module holds enough air and water to keep the crew alive, if a bit panicked and sir-crazy, for up to three weeks.

Exploration ground systems

CAPE CANAVERAL, FL - NOVEMBER 3: In this handout photo provided by NASA, NASAs Space Launch System (SLS) rocket with the Orion spacecraft aboard is seen atop the mobile launcher as Crawler Transporter-2 (CT-2) begins to climb the ramp at Launch Pad 39B at NASAs Kennedy Space Center on November 3, 2022 in Cape Canaveral, Florida. NASA's Artemis I mission is the first integrated test of the agency's deep space exploration systems: the Orion spacecraft, SLS rocket, and supporting ground systems. Launch of the uncrewed flight test is targeted for November 14 at 12:07 a.m. EST. (Photo by Joel Kowsky/NASA via Getty Images)
Handout via Getty Images

Located at the Kennedy Space Center in Florida, the Artemis program’s Exploration Ground Systems (EGS) is tasked with developing and enacting the facilities and operations necessary to conduct SLS missions. That includes the Vehicle Assembly Building, the Launch Control Center, the Firing Rooms, Mobile Launchers 1 and 2, the Crawlers that haul rockets out to the launchpads, and also the launchpads — specifically Launch Pad 39B. Teams have been working to modernize many of those facilities and NASA notes that it, “has successfully upgraded its processes, facilities, and ground support equipment to safely handle rockets and spacecraft during assembly, transport, and launch.”

NASA already has five main Artemis launches scheduled. The uncrewed Artemis I, again, successfully launched in November. Artemis II, which will carry four live astronauts for the first time but only loop around the moon, launches in 2024. Artemis III will go up in 2025 and is expected to be the first to actually set down on the moon. Artemis IV is slated for 2027 and will deliver half of the lunar Gateway (as well as debut the EUS) while Artemis V is set to deliver the other half of the Gateway in 2028. From there, NASA has some thoughts on Artemis missions VI (2029) through X (2033) but has not finalized any details as of yet.

Artemis support missions

“We need several years in orbit and on the surface of the moon to build operational confidence for conducting long-term work and supporting life away from Earth before we can embark on the first multi-year human mission to Mars,” Bridenstine said in 2020. “The sooner we get to the moon, the sooner we get American astronauts to Mars.”

the capstone cubesat flying over the moon with the sun in the distance
NASA

But before we can build confidence in our ability to survive on Mars, we need to build confidence in our ability to survive on the moon. The Artemis support missions will do just that. The Capstone Mission ("Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment"), for example, successfully launched a 55-pound cubesat in June to confirm NASA’s math for the much larger Gateway’s future orbital path. While in orbit, the Capstone will communicate and coordinate some of its maneuvers with the Lunar Reconnaissance Orbiter which has been circling the moon since 2009.

In 2023, NASA also plans to launch the VIPER robotic rover to the moon’s South Pole where it will search the lowest, darkest, coldest craters for accessible water ice. Finding a source for H2O is of paramount importance to the long-term viability of the colony. In space, water isn’t just for drinking and bathing — it can be split into its component atoms and used to fuel our oxidizing rockets, potentially turning the Moon into an orbital gas station as we push farther out from Earth. The rover, and others like it, will be delivered to the surface as part of NASA’s Commercial Lunar Payload Services (CLPS) program.

It wasn’t until the mid 1990s that NASA even confirmed the presence of water ice on the moon and only two years ago did they discovered ice accessible from the moon’s surface. “We had indications that H2O – the familiar water we know – might be present on the sunlit side of the moon,” Paul Hertz, director of the Astrophysics Division in the Science Mission Directorate at NASA Headquarters, said at the time. “Now we know it is there. This discovery challenges our understanding of the lunar surface and raises intriguing questions about resources relevant for deep space exploration.”

Similarly, any habitat established on the surface will need an ample supply of electricity to remain online. Solar charging is one obvious choice (that lack of atmosphere is finally coming in handy) but NASA has never been one to underprepare and has already selected three aerospace companies to develop nuclear power sources for potential deployment.

Gateway

Gateway components blowup
NASA

In addition to a surface installation, NASA plans on putting a full-fledged space station, dubbed the Lunar Gateway, into orbit around the moon where it will serve much the same purpose as the ISS does today. Visiting researchers will stay aboard the pressurized Habitation and Logistics Outpost (HALO) module where they’ll have access to research facilities, remote rover controls and docking for both Orion capsules from Earth and HLS (Human Landing System) landers to the moon’s surface. A 60kW solar plant will provide power to the station, which also serves as a communications relay hub with the planet. The station’s position around the moon will also provide a unique astronomical perspective for future research.

The Gateway will very much be an international operation. As NASA points out, Canada’s CSA is providing “advanced robotics” for use upon the station, the ESA is supplying a second living module called the International Habitat (IHab) as well as the ESPRIT communications module and an array of research cubesats. Japan’s JAXA will kick in additional habitat components and assist with resupply logistics.

Human Landing System and rovers

From the Gateway, astronauts and researchers will ferry down to the moon’s surface to collect samples, run experiments and conduct observations aboard the Human Landing System, a reusable lunar lander program currently being operated out of Marshall Space Flight Center in Huntsville, Alabama.

NASA selected SpaceX’s Starship for its initial landing system in April 2021, awarding the company $2.9 billion to further the vehicle’s development. The agency then awarded SpaceX with another $1.15 billion this past November as part of the Option B contract modification. The extra money will help fund planned upgrades to the spacecraft, which is being modified from the base Starship design for use on and around the moon’s surface.

“Continuing our collaborative efforts with SpaceX through Option B furthers our resilient plans for regular crewed transportation to the lunar surface and establishing a long-term human presence under Artemis,” Lisa Watson-Morgan, NASA HLS program manager, said in November. “This critical work will help us focus on the development of sustainable, service-based lunar landers anchored to NASA’s requirements for regularly recurring missions to the lunar surface.”

Researchers, however, will not be content to travel nearly a quarter million miles just to set down on the moon and look out the lander’s windows. Instead, they’ll be free to wander around the surface safely ensconced in spacewalk equipment supplied by Axiom Space and Collins Aerospace.

“With these awards, NASA and our partners will develop advanced, reliable spacesuits that allow humans to explore the cosmos unlike ever before,” said Vanessa Wyche, director of NASA’s Johnson Space Center in Houston, said in June. “By partnering with industry, we are efficiently advancing the necessary technology to keep Americans on a path of successful discovery on the International Space Station and as we set our sights on exploring the lunar surface.”

Those researchers won’t be on foot either. Just as the Apollo astronauts famously bounced around on NASA’s first-gen lunar rovers, the Artemis missions will use new Lunar Terrain Vehicles. The unpressurized buggies are currently still in development but NASA expects to have a finalized proposal ready by next year and have the LTVs ready for surface service by 2028.

The Artemis Base Camp

When not in use, the LTVs will be parked at NASA’s Artemis Base Camp at the lunar South Pole, alongside a pressurized version designed for longer-duration expeditions. The surface habitat itself will be able to support up to four residents at a time and provide communications, equipment storage, power and, most importantly, robust radiation shielding (and there’s the downside of not having an atmosphere). A site hasn’t yet been officially selected, though mission planners are looking for areas near the region’s permanently shadowed craters where water ice is expected to be most easily accessible (aside from the negative 280 degree temperatures and perpetual darkness).

“On each new trip, astronauts are going to have an increasing level of comfort with the capabilities to explore and study more of the moon than ever before,” Kathy Lueders, associate administrator for human spaceflight at NASA Headquarters, said in 2020. “With more demand for access to the moon, we are developing the technologies to achieve an unprecedented human and robotic presence 240,000 miles from home. Our experience on the moon this decade will prepare us for an even greater adventure in the universe — human exploration of Mars.”

Everything NASA is taking to the moon before colonizing Mars

Amid the pantheon of Greek gods, few are more revered than Artemis, Goddess of the hunt, chastity, and the moon; Mistress of Animals, Daughter of Zeus and twin sister to Apollo. Famed for her pledge to never marry, feared from that time she turned the peeping Acteon into a stag and set his own hunting dogs upon him, Artemis has stood as a feminist icon for millenia. It seems only fitting then that NASA names after her a trailblazing mission that will see both the first woman and first person of color set foot on the moon, ahead of humanity’s first off-planet colony.

In fact, NASA has been naming its missions after Zeus’ progeny since the advent of spaceflight. There was the Mercury Program (the Roman spelling of Hermes) in 1958, then Gemini in ‘68 followed by Apollo in ‘73. NASA took a quick break on the naming convention during the Shuttle era but revived it when it formally established the Artemis program in 2017. Working with the European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA), Canadian Space Agency (CSA), and a slew of private corporations, NASA’s goal for Artemis is simple: to re-establish a human foothold on the moon for the first time since 1972, and stay there.

NASA is building a coalition of partnerships with industry, nations and academia that will help us get to the moon quickly and sustainably, together,” then-NASA director Jim Bridenstine said in 2020. “Our work to catalyze the US space economy with public-private partnerships has made it possible to accomplish more than ever before. The budget we need to achieve everything laid out in this plan represents bipartisan support from the Congress.”

“Under the Artemis program, humanity will explore regions of the moon never visited before, uniting people around the unknown, the never seen, and the once impossible,” he continued. “We will return to the moon robotically beginning next year, send astronauts to the surface within four years, and build a long-term presence on the Moon by the end of the decade.”

CAPE CANAVERAL, FLORIDA - NOVEMBER 16: NASA’s Artemis I Space Launch System (SLS) rocket, with the Orion capsule attached, launches at NASA's Kennedy Space Center on November 16, 2022 in Cape Canaveral, Florida. The Artemis I mission will send the uncrewed spacecraft around the moon to test the vehicle's propulsion, navigation and power systems as a precursor to later crewed mission to the lunar surface. (Photo by Red Huber/Getty Images)
Red Huber via Getty Images

Just as Artemis the Goddess grew out of earlier pre-Hellenistic mythology, Artemis the Program was born from the ashes of the earlier Constellation program from the early 2000s which sought to land on the moon by 2020 — specifically the Ares I, Ares V, and Orion Crew Exploration Vehicle that were developed as part of that effort. In 2010, then-President Barack Obama announced that the non-Orion bits of Constellation were being axed and simultaneously called for $6 billion in additional funding as well as the development of a new heavy lift rocket program with a goal of putting humans on Mars by the mid-2030s. This became the NASA Authorization Act of 2010 and formally kicked off development of the Space Launch System, the most powerful rocket NASA has built to date.

The Artemis program was helped further in December of 2017 when former President Donald Trump signed Space Policy Directive 1 (SPD 1). That policy change, “provides for a US-led, integrated program with private sector partners for a human return to the moon, followed by missions to Mars and beyond” and authorized the campaign that would become Artemis two years later. In 2019, then-Vice President Mike Pence announced that the program’s goals were accelerating, the moon landing goal pushed up four years to 2024 though its original goal of Mars in the 2030s remained unchanged.

“The directive I am signing today will refocus America’s space program on human exploration and discovery,” Trump said at the time. “It marks a first step in returning American astronauts to the moon for the first time since 1972, for long-term exploration and use. This time, we will not only plant our flag and leave our footprints — we will establish a foundation for an eventual mission to Mars, and perhaps someday, to many worlds beyond.”

Bang, zoom, straight to the moon

a diagram of how the Artemis missions will approach the moon
NASA

Now, we know NASA can put people on the moon — it’s the keeping them there, alive, that’s the issue. The moon, for all its tide-inducing benefits here on Earth, is generally inhospitable to life, what with its general lack of breathable atmosphere and liquid water, weak gravity, massive temperature swings and razor-sharp, statically-charged dust. The first colonists will need power, heat, atmosphere, potable water — all of which will have to either be brought from Earth or extracted locally from the surrounding regolith.

Complicating matters, the Moon, at 230,000 miles away, is about a thousand times farther than the International Space Station, and getting a crew with everything they need to survive for more than a few days is going to require multiple trips — not just from Earth orbit to the moon but also from lunar orbit down to the surface and back. But high-risk, high-reward logistical nightmares are kind of NASA’s whole deal.

As such, the Artemis program is split between the SLS missions, which will eventually bring the human crew to the moon, and the support missions, which will bring everything else. That includes robotic rovers, the Human Landing System, as well as moonbase and Gateway components along with all of the logistical support and infrastructure that they will require.

Artemis SLS missions

The SLS missions are built around NASA’s new Deep Space Exploration System, which comprises the SLS super heavy-lift launch vehicle, the Orion Spacecraft and the Exploration Ground Systems at Kennedy Space Center (KSC).

Artemis 1 moon sequence
NASA

NASA’s deep space exploration system

The Space Launch System is the single most powerful rocket humanity has built and, given its modular, evolvable design, will likely continue to be for the foreseeable future. Its initial configuration, dubbed Block 1, consists of just the core stage with four RS-25 engines and two, five-segment solid rocket boosters. Once the SLS breaks atmosphere, its Interim Cryogenic Propulsion Stage takes over for in-space propulsion.

Those RS-25’s are the same engines that flew on the Space Shuttle. Aerojet Rocketdyne of Sacramento, California is updating and upgrading 16 of them for use in the modern era — bringing them up to standard for use with the SLS — with a new engine controller, new nozzle insulation, and 512,000 pounds of thrust. Altogether, the core stage will produce 8.8 million pounds of thrust and be capable of pushing 27 metric tons (22,000 sqft) of cargo out to the moon at speeds in excess of 24,500 miles per hour. The Artemis 1 mission that launched in November, as well as the next two Artemis missions, are slash will be powered by Block 1 rockets.

SLS Block builds
NASA

Block 1B rockets will include an Exploration Upper Stage (EUS) built by Boeing and composed of “four RL10C-3 engines that produce almost four times more thrust than the one RL10B-2 engine that powers the ICPS,” per NASA. That additional engine will enable the space agency to haul 38 tons of cargo out of Earth’s gravity well. This updated block will provide NASA a bit more flexibility in its launches. A 1B rocket can be configured to lift the Orion spacecraft or cargo loads into deep space as easily as it can be for hauling large cargoes to the moon or Mars. NASA plans to lift unwieldy portions of the moonbase and Gateway into space with it.

The SLS’ final form (for now) will be Block 2. Standing more than 30 stories tall, weighing the equivalent of 10 fully-loaded 747’s, the block 2 blasting 9.2 million pounds of thrust (20 percent more than the Saturn V) to push 46 metric tons of stuff (taking up as much as 54,000 square feet) into deep space. Once that configuration comes online, NASA expects it to take on much of the heavy lifting (sorry not sorry) in delivering crews and cargo to the moon.

Orion spacecraft

Riding atop the SLS’s multi-ton controlled explosions is the Orion Spacecraft, the first crew capsule designed for deep space exploration in more than a generation. Designed and built with help from the ESA, the Orion sandwiches a four-person crew cabin in between a services module that holds all of the important life support, navigation and propulsion systems, and a Launch Abort System (LAS) that will forcibly eject the crew capsule from the larger launch vehicle if a catastrophic failure occurs during takeoff.

The 50-foot tall LAS weighs 16,000 pounds and is designed to engage within milliseconds of a launch going sideways, lifting the crew cabin away from the rest of the SLS at Mach 1.2 using the 400,000 pounds of thrust produced by the abort motor. Its attitude control motor provides another 7,000 pounds of thrust to keep the capsule upright during escape while the jettison motor will separate the LAS from the cabin once clear, the latter deploying a parachute ahead of its upcoming water landing.

The LAS actually predates Orion by four years. The LAS was first integrated into a Delta IV and flown at the White Sands test facility in New Mexico in 2010 while the (uncrewed) Orion Exploration Flight Test-1 didn’t take off for its four-hour, two orbit jaunt until 2014.

The Orion main cabin is just under 16 feet tall and just over 16 feet in diameter. Its four wing solar array produces 11kW of power and the attached service module holds enough air and water to keep the crew alive, if a bit panicked and sir-crazy, for up to three weeks.

Exploration ground systems

CAPE CANAVERAL, FL - NOVEMBER 3: In this handout photo provided by NASA, NASAs Space Launch System (SLS) rocket with the Orion spacecraft aboard is seen atop the mobile launcher as Crawler Transporter-2 (CT-2) begins to climb the ramp at Launch Pad 39B at NASAs Kennedy Space Center on November 3, 2022 in Cape Canaveral, Florida. NASA's Artemis I mission is the first integrated test of the agency's deep space exploration systems: the Orion spacecraft, SLS rocket, and supporting ground systems. Launch of the uncrewed flight test is targeted for November 14 at 12:07 a.m. EST. (Photo by Joel Kowsky/NASA via Getty Images)
Handout via Getty Images

Located at the Kennedy Space Center in Florida, the Artemis program’s Exploration Ground Systems (EGS) is tasked with developing and enacting the facilities and operations necessary to conduct SLS missions. That includes the Vehicle Assembly Building, the Launch Control Center, the Firing Rooms, Mobile Launchers 1 and 2, the Crawlers that haul rockets out to the launchpads, and also the launchpads — specifically Launch Pad 39B. Teams have been working to modernize many of those facilities and NASA notes that it, “has successfully upgraded its processes, facilities, and ground support equipment to safely handle rockets and spacecraft during assembly, transport, and launch.”

NASA already has five main Artemis launches scheduled. The uncrewed Artemis I, again, successfully launched in November. Artemis II, which will carry four live astronauts for the first time but only loop around the moon, launches in 2024. Artemis III will go up in 2025 and is expected to be the first to actually set down on the moon. Artemis IV is slated for 2027 and will deliver half of the lunar Gateway (as well as debut the EUS) while Artemis V is set to deliver the other half of the Gateway in 2028. From there, NASA has some thoughts on Artemis missions VI (2029) through X (2033) but has not finalized any details as of yet.

Artemis support missions

“We need several years in orbit and on the surface of the moon to build operational confidence for conducting long-term work and supporting life away from Earth before we can embark on the first multi-year human mission to Mars,” Bridenstine said in 2020. “The sooner we get to the moon, the sooner we get American astronauts to Mars.”

the capstone cubesat flying over the moon with the sun in the distance
NASA

But before we can build confidence in our ability to survive on Mars, we need to build confidence in our ability to survive on the moon. The Artemis support missions will do just that. The Capstone Mission ("Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment"), for example, successfully launched a 55-pound cubesat in June to confirm NASA’s math for the much larger Gateway’s future orbital path. While in orbit, the Capstone will communicate and coordinate some of its maneuvers with the Lunar Reconnaissance Orbiter which has been circling the moon since 2009.

In 2023, NASA also plans to launch the VIPER robotic rover to the moon’s South Pole where it will search the lowest, darkest, coldest craters for accessible water ice. Finding a source for H2O is of paramount importance to the long-term viability of the colony. In space, water isn’t just for drinking and bathing — it can be split into its component atoms and used to fuel our oxidizing rockets, potentially turning the Moon into an orbital gas station as we push farther out from Earth. The rover, and others like it, will be delivered to the surface as part of NASA’s Commercial Lunar Payload Services (CLPS) program.

It wasn’t until the mid 1990s that NASA even confirmed the presence of water ice on the moon and only two years ago did they discovered ice accessible from the moon’s surface. “We had indications that H2O – the familiar water we know – might be present on the sunlit side of the moon,” Paul Hertz, director of the Astrophysics Division in the Science Mission Directorate at NASA Headquarters, said at the time. “Now we know it is there. This discovery challenges our understanding of the lunar surface and raises intriguing questions about resources relevant for deep space exploration.”

Similarly, any habitat established on the surface will need an ample supply of electricity to remain online. Solar charging is one obvious choice (that lack of atmosphere is finally coming in handy) but NASA has never been one to underprepare and has already selected three aerospace companies to develop nuclear power sources for potential deployment.

Gateway

Gateway components blowup
NASA

In addition to a surface installation, NASA plans on putting a full-fledged space station, dubbed the Lunar Gateway, into orbit around the moon where it will serve much the same purpose as the ISS does today. Visiting researchers will stay aboard the pressurized Habitation and Logistics Outpost (HALO) module where they’ll have access to research facilities, remote rover controls and docking for both Orion capsules from Earth and HLS (Human Landing System) landers to the moon’s surface. A 60kW solar plant will provide power to the station, which also serves as a communications relay hub with the planet. The station’s position around the moon will also provide a unique astronomical perspective for future research.

The Gateway will very much be an international operation. As NASA points out, Canada’s CSA is providing “advanced robotics” for use upon the station, the ESA is supplying a second living module called the International Habitat (IHab) as well as the ESPRIT communications module and an array of research cubesats. Japan’s JAXA will kick in additional habitat components and assist with resupply logistics.

Human Landing System and rovers

From the Gateway, astronauts and researchers will ferry down to the moon’s surface to collect samples, run experiments and conduct observations aboard the Human Landing System, a reusable lunar lander program currently being operated out of Marshall Space Flight Center in Huntsville, Alabama.

NASA selected SpaceX’s Starship for its initial landing system in April 2021, awarding the company $2.9 billion to further the vehicle’s development. The agency then awarded SpaceX with another $1.15 billion this past November as part of the Option B contract modification. The extra money will help fund planned upgrades to the spacecraft, which is being modified from the base Starship design for use on and around the moon’s surface.

“Continuing our collaborative efforts with SpaceX through Option B furthers our resilient plans for regular crewed transportation to the lunar surface and establishing a long-term human presence under Artemis,” Lisa Watson-Morgan, NASA HLS program manager, said in November. “This critical work will help us focus on the development of sustainable, service-based lunar landers anchored to NASA’s requirements for regularly recurring missions to the lunar surface.”

Researchers, however, will not be content to travel nearly a quarter million miles just to set down on the moon and look out the lander’s windows. Instead, they’ll be free to wander around the surface safely ensconced in spacewalk equipment supplied by Axiom Space and Collins Aerospace.

“With these awards, NASA and our partners will develop advanced, reliable spacesuits that allow humans to explore the cosmos unlike ever before,” said Vanessa Wyche, director of NASA’s Johnson Space Center in Houston, said in June. “By partnering with industry, we are efficiently advancing the necessary technology to keep Americans on a path of successful discovery on the International Space Station and as we set our sights on exploring the lunar surface.”

Those researchers won’t be on foot either. Just as the Apollo astronauts famously bounced around on NASA’s first-gen lunar rovers, the Artemis missions will use new Lunar Terrain Vehicles. The unpressurized buggies are currently still in development but NASA expects to have a finalized proposal ready by next year and have the LTVs ready for surface service by 2028.

The Artemis Base Camp

When not in use, the LTVs will be parked at NASA’s Artemis Base Camp at the lunar South Pole, alongside a pressurized version designed for longer-duration expeditions. The surface habitat itself will be able to support up to four residents at a time and provide communications, equipment storage, power and, most importantly, robust radiation shielding (and there’s the downside of not having an atmosphere). A site hasn’t yet been officially selected, though mission planners are looking for areas near the region’s permanently shadowed craters where water ice is expected to be most easily accessible (aside from the negative 280 degree temperatures and perpetual darkness).

“On each new trip, astronauts are going to have an increasing level of comfort with the capabilities to explore and study more of the moon than ever before,” Kathy Lueders, associate administrator for human spaceflight at NASA Headquarters, said in 2020. “With more demand for access to the moon, we are developing the technologies to achieve an unprecedented human and robotic presence 240,000 miles from home. Our experience on the moon this decade will prepare us for an even greater adventure in the universe — human exploration of Mars.”

How NASA might protect tomorrow’s astronauts from deep space radiation

There are a million and one ways to die in space, whether it’s from micrometeoroid impacts shredding your ship or solar flares frying its electronics, drowning in your own sweat during a spacewalk or having a cracked coworker push you out an airlock. And right at the top of the list is death by radiation.

Those same energetic emissions from our local star that give you a tan can scour the atmosphere from a planet if it doesn’t enjoy the protection of an ozone layer. While today’s low Earth orbit crew and cargo capsules may not come equipped with miniature magnetospheres of their own, tomorrow’s might — or maybe we’ll just protect humanity’s first deep space explorers from interstellar radiation by ensconcing them safely in their own poop.

Types of Radiation and what to do about them

Like strokes and folks, there are different types and sources of radiation both terrestrial and in space. Non-ionizing radiation, meaning the atom doesn’t have enough energy to fully remove an electron from its orbit, can be found in microwaves, light bulbs, and Solar Energetic Particles (SEP) like visible and ultraviolet light. While these forms of radiation can damage materials and biological systems, their effects can typically be blocked (hence sunscreen and microwaves that don't irradiate entire kitchens) or screened by the Ozone layer or Earth’s magnetosphere.

Earth’s radiation belts are filled with energetic particles trapped by Earth’s magnetic field that can wreak havoc with electronics we send to space. Credits: NASA's Scientific Visualization Studio/Tom Bridgman

Ionizing radiation, on the other hand, is energetic to shed an electron and there isn’t much that can slow their positively-charged momentum. Alpha and beta particles, Gamma rays, X-rays and Galactic Cosmic Rays, “heavy, high-energy ions of elements that have had all their electrons stripped away as they journeyed through the galaxy at nearly the speed of light,” per NASA. “GCR are a dominant source of radiation that must be dealt with aboard current spacecraft and future space missions within our solar system.” GCR intensity is inversely proportional to the relative strength of the Sun’s magnetic field, meaning that they are strongest when the Sun’s field is at its weakest and least able to deflect them.

Select health effects due to space radiation exposures
Chancellor, J., Scott, G., & Sutton, J. (2014)

Despite their dissimilar natures, both GCR and SEP damage the materials designed to shield our squishy biological bodies from radiation along with our biological bodies themselves. Their continued bombardment has a cumulative negative effect on human physiology resulting not just in cancer but cataracts, neurological damage, germline mutations, and acute radiation sickness if the dose is high enough. For materials, high-energy particles and photons can cause “temporary damage or permanent failure of spacecraft materials or devices,” Zicai Shen of the Beijing Institute of Spacecraft Environment Engineering notes in 2019’s Protection of Materials from Space Radiation Environments on Spacecraft.

“Charged particles gradually lose energy as they pass through the material, and finally, capture a sufficient number of electrons to stop,” they added. “When the thickness of the shielding material is greater than the range of a charged particle in the material, the incident particles will be blocked in the material.”

How NASA currently protects its astronauts

To ensure that tomorrow’s astronauts arrive at Mars with all of their teeth and fingernails intact, NASA has spent nearly four decades collecting data and studying the effects radiation has on the human body. The agency’s Space Radiation Analysis Group (SRAG) at Johnson Space Center is, according to its website, “responsible for ensuring that the radiation exposure received by astronauts remains below established safety limits.”

According to NASA, “the typical average dose for a person is about 360 mrems per year, or 3.6 mSv, which is a small dose. However, International Standards allow exposure to as much as 5,000 mrems (50 mSv) a year for those who work with and around radioactive material. For spaceflight, the limit is higher. The NASA limit for radiation exposure in low-Earth orbit is 50 mSv/year, or 50 rem/year.”

SRAG’s Space Environment Officers (SEOs) are tasked with ensuring that the astronauts can successfully complete their mission without absorbing too many RADs. They take into account the various environmental and situational factors present during a spaceflight — whether the astronauts are in LEO or on the lunar surface, whether they stay in the spacecraft or take a spacewalk, or whether there is a solar storm going on — combine and model that information with data collected from onboard and remote radiation detectors as well as the NOAA space weather prediction center, to make their decisions.

The Radiation Effects and Analysis Group at Goddard Space Flight Center, serves much the same purpose as SRAG but for mechanical systems, working to develop more effective shielding and more robust materials for use in orbit.

“We will be able to ensure that humans, electronics, spacecraft and instruments — anything we are actually sending into space — will survive in the environment we are putting it in,” Megan Casey, an aerospace engineer in the REAG said in a 2019 release. “Based on where they’re going, we tell mission designers what their space environment will be like, and they come back to us with their instrument plans and ask, ‘Are these parts going to survive there?’ The answer is always yes, no, or I don’t know. If we don’t know, that’s when we do additional testing. That’s the vast majority of our job.”

NASA’s research will continue and expand throughout the upcoming Artemis mission era. During test flights for the Artemis I mission, both the SLS rocket and the Orion spacecraft will be outfitted with sensors measuring radiation levels in deep space beyond the moon — specifically looking at the differences in relative levels beyond the Earth’s Van Allen Belts. Data collected and lessons learned from these initial uncrewed flights will help NASA engineers build better, more protective spacecraft in the future.

And once it does eventually get built, crews aboard the Lunar Gateway will maintain an expansive radiation sensor suite, including the Internal Dosimeter Array, designed to carefully and continually measure levels within the station as it makes its week-long oblong orbit around the moon.

“Understanding the effects of the radiation environment is not only critical for awareness of the environment where astronauts will live in the vicinity of the Moon, but it will also provide important data that can be used as NASA prepares for even greater endeavors, like sending the first humans to Mars,” Dina Contella, manager for Gateway Mission Integration and Utilization, said in a 2021 release.

NASA might use magnetic bubbles in the future

Tomorrow’s treks into interplanetary space, where GCR and SEP are more prevalent, are going to require more comprehensive protection than the current state of the art passive shielding materials and space weather forecasting predictions can deliver. And since the Earth’s own magnetosphere has proven so handy, researchers with the European Commission's Community Research and Development Information Service (CORDIS) have researched creating one small enough to fit on a spaceship, dubbed the Space Radiation Superconducting Shield (SR2S).

The €2.7 million SR2S program, which ran from 2013 to 2015, expanded on the idea of using superconducting magnets to generate a radiation-stopping magnetic force field first devised by ex-Nazi aerospace engineer Wernher von Braun in 1969. The magnetic field produced would be more than 3,000 times more concentrated than the one encircling the Earth and would extend out in a 10-meter sphere.

“In the framework of the project, we will test, in the coming months, a racetrack coil wound with an MgB2 superconducting tape,” Bernardo Bordini, coordinator of CERN activity in the framework of the SR2S project, said in 2015. “The prototype coil is designed to quantify the effectiveness of the superconducting magnetic shielding technology.”

It wouldn’t block all incoming radiation, but would efficiently screen out the most damaging types, like GCR, which flows through passive shielding like water through a colander. By lowering the rate at which astronauts are exposed to radiation, they’ll be able to serve on more and longer duration missions before hitting NASA’s lifetime exposure limit.

“As the magnetosphere deflects cosmic rays directed toward the earth, the magnetic field generated by a superconducting magnet surrounding the spacecraft would protect the crew,” Dr Riccardo Musenich, scientific and technical manager for the project, told Horizon in 2014. “SR2S is the first project which not only investigates the principles and the scientific problems (of magnetic shielding), but it also faces the complex issues in engineering.”

Two superconducting coils have already been constructed and tested, showing the feasibility in using them to build lightweight magnets but this is very preliminary research, mind you. The CORDIS team doesn’t anticipate this tech making it into space for another couple decades.

Researchers from University of Wisconsin–Madison's Department of Astronomy have recently set about developing their own version of CORDIS’ idea. Their Cosmic Radiation Extended Warding using the Halbach Torus (CREW HaT) project, which received prototyping funding from NASA’s Innovative Advanced Concepts (NIAC) program in February, uses “new superconductive tape technology, a deployable design, and a new configuration for a magnetic field that hasn't been explored before," according to UWM associate professor and researches lead author, Dr. Elena D'Onghia told Universe Today in May.

it's very spindly.
NASA

“The HaT geometry has never been explored before in this context or studied in combination with modern superconductive tapes,” she said in February’s NIAC summary. “It diverts over 50 percent of the biology-damaging cosmic rays (protons below 1 GeV) and higher energy high-Z ions. This is sufficient to reduce the radiation dose absorbed by astronauts to a level that is less than 5 percent of the lifetime excess risk of cancer mortality levels established by NASA.”

Or astronauts might wear leaden vests to protect their privates

But why go through the effort of magnetically encapsulating an entire spaceship when really it’s just a handful of torsos and heads that actually need the protection? That’s the idea behind the Matroshka AstroRad Radiation Experiment (MARE).

Developed in partnership with both the Israel Space Agency (ISA) and the German Aerospace Center (DLR), two of the MARE vests will be strapped aboard identical mannequins and launched into space aboard the Orion uncrewed moon mission. On their three-week flight, the mannequins, named Helga and Zohar, will travel some 280,000 miles from Earth and thousands of miles past the moon. Their innards are designed to mimic human bones and soft tissue, enabling researchers to measure the specific radiation doses they receive.

Its sibling study aboard the ISS, the Comfort and Human Factors AstroRad Radiation Garment Evaluation (CHARGE), focuses less on the vest’s anti-rad effectiveness and more on the ergonomics, fit and feel of it as astronauts go about their daily duties. The European Space Agency is also investigating garment-based radiation shielding with the FLARE suit, an “emergency device that aims to protect astronauts from intense solar radiation when traveling out of the magnetosphere on future Deep Space missions.”

Or we’ll line the ship hulls with water and poo!

One happy medium between the close-in discomfort of wearing a leaded apron in microgravity and the existential worry of potentially having your synapses scrambled by a powerful electromagnet is known as Water Wall technology.

“Nature uses no compressors, evaporators, lithium hydroxide canisters, oxygen candles, or urine processors,” Marc M. Cohen Arch.D, argued in the 2013 paper Water Walls Architecture: Massively Redundant and Highly Reliable Life Support for Long Duration Exploration Missions. “For very long-term operation — as in an interplanetary spacecraft, space station, or lunar/planetary base — these active electro-mechanical systems tend to be failure-prone because the continuous duty cycles make maintenance difficult.”

So, rather than rely on heavy and complicated mechanizations to process the waste materials that astronauts emit during a mission, this system utilizes osmosis bags that mimic nature’s own passive means of purifying water. In addition to treating gray and black water, these bags could also be adapted to scrub CO2 from the air, grow algae for food and fuel, and can be lined against the inner hull of a spacecraft to provide superior passive shielding against high energy particles.

“Water is better than metals for [radiation] protection,” Marco Durante of the Technical University of Darmstadt in Germany, told New Scientist in 2013. This is because the three-atom nucleus of a water molecule contains more mass than a metal atom and therefore is more effective at blocking GCR and other high energy rays, he continued.

The crew aboard the proposed Inspiration Mars mission, which would have slingshot a pair of private astronauts around Mars in a spectacular flyby while the two planets were at their orbital closest in 2018. You haven’t heard anything about that because the nonprofit behind it quietly went under in 2015. But had they somehow pulled off that feat, the plan was to have the astronauts poop into bags, sophon out the liquid for reuse and then pile the vacuum-sealed shitbricks against the walls of the spacecraft — alongside their boxes of food — to act as radiation insulation.

“It’s a little queasy sounding, but there’s no place for that material to go, and it makes great radiation shielding,” Taber MacCallum, a member of the nonprofit funded by Dennis Tito, told New Scientist. “Food is going to be stored all around the walls of the spacecraft, because food is good radiation shielding.” It’s just a quick jaunt to the next planet over, who needs plumbing and sustenance?

How NASA might protect tomorrow’s astronauts from deep space radiation

There are a million and one ways to die in space, whether it’s from micrometeoroid impacts shredding your ship or solar flares frying its electronics, drowning in your own sweat during a spacewalk or having a cracked coworker push you out an airlock. And right at the top of the list is death by radiation.

Those same energetic emissions from our local star that give you a tan can scour the atmosphere from a planet if it doesn’t enjoy the protection of an ozone layer. While today’s low Earth orbit crew and cargo capsules may not come equipped with miniature magnetospheres of their own, tomorrow’s might — or maybe we’ll just protect humanity’s first deep space explorers from interstellar radiation by ensconcing them safely in their own poop.

Types of Radiation and what to do about them

Like strokes and folks, there are different types and sources of radiation both terrestrial and in space. Non-ionizing radiation, meaning the atom doesn’t have enough energy to fully remove an electron from its orbit, can be found in microwaves, light bulbs, and Solar Energetic Particles (SEP) like visible and ultraviolet light. While these forms of radiation can damage materials and biological systems, their effects can typically be blocked (hence sunscreen and microwaves that don't irradiate entire kitchens) or screened by the Ozone layer or Earth’s magnetosphere.

Earth’s radiation belts are filled with energetic particles trapped by Earth’s magnetic field that can wreak havoc with electronics we send to space. Credits: NASA's Scientific Visualization Studio/Tom Bridgman

Ionizing radiation, on the other hand, is energetic to shed an electron and there isn’t much that can slow their positively-charged momentum. Alpha and beta particles, Gamma rays, X-rays and Galactic Cosmic Rays, “heavy, high-energy ions of elements that have had all their electrons stripped away as they journeyed through the galaxy at nearly the speed of light,” per NASA. “GCR are a dominant source of radiation that must be dealt with aboard current spacecraft and future space missions within our solar system.” GCR intensity is inversely proportional to the relative strength of the Sun’s magnetic field, meaning that they are strongest when the Sun’s field is at its weakest and least able to deflect them.

Select health effects due to space radiation exposures
Chancellor, J., Scott, G., & Sutton, J. (2014)

Despite their dissimilar natures, both GCR and SEP damage the materials designed to shield our squishy biological bodies from radiation along with our biological bodies themselves. Their continued bombardment has a cumulative negative effect on human physiology resulting not just in cancer but cataracts, neurological damage, germline mutations, and acute radiation sickness if the dose is high enough. For materials, high-energy particles and photons can cause “temporary damage or permanent failure of spacecraft materials or devices,” Zicai Shen of the Beijing Institute of Spacecraft Environment Engineering notes in 2019’s Protection of Materials from Space Radiation Environments on Spacecraft.

“Charged particles gradually lose energy as they pass through the material, and finally, capture a sufficient number of electrons to stop,” they added. “When the thickness of the shielding material is greater than the range of a charged particle in the material, the incident particles will be blocked in the material.”

How NASA currently protects its astronauts

To ensure that tomorrow’s astronauts arrive at Mars with all of their teeth and fingernails intact, NASA has spent nearly four decades collecting data and studying the effects radiation has on the human body. The agency’s Space Radiation Analysis Group (SRAG) at Johnson Space Center is, according to its website, “responsible for ensuring that the radiation exposure received by astronauts remains below established safety limits.”

According to NASA, “the typical average dose for a person is about 360 mrems per year, or 3.6 mSv, which is a small dose. However, International Standards allow exposure to as much as 5,000 mrems (50 mSv) a year for those who work with and around radioactive material. For spaceflight, the limit is higher. The NASA limit for radiation exposure in low-Earth orbit is 50 mSv/year, or 50 rem/year.”

SRAG’s Space Environment Officers (SEOs) are tasked with ensuring that the astronauts can successfully complete their mission without absorbing too many RADs. They take into account the various environmental and situational factors present during a spaceflight — whether the astronauts are in LEO or on the lunar surface, whether they stay in the spacecraft or take a spacewalk, or whether there is a solar storm going on — combine and model that information with data collected from onboard and remote radiation detectors as well as the NOAA space weather prediction center, to make their decisions.

The Radiation Effects and Analysis Group at Goddard Space Flight Center, serves much the same purpose as SRAG but for mechanical systems, working to develop more effective shielding and more robust materials for use in orbit.

“We will be able to ensure that humans, electronics, spacecraft and instruments — anything we are actually sending into space — will survive in the environment we are putting it in,” Megan Casey, an aerospace engineer in the REAG said in a 2019 release. “Based on where they’re going, we tell mission designers what their space environment will be like, and they come back to us with their instrument plans and ask, ‘Are these parts going to survive there?’ The answer is always yes, no, or I don’t know. If we don’t know, that’s when we do additional testing. That’s the vast majority of our job.”

NASA’s research will continue and expand throughout the upcoming Artemis mission era. During test flights for the Artemis I mission, both the SLS rocket and the Orion spacecraft will be outfitted with sensors measuring radiation levels in deep space beyond the moon — specifically looking at the differences in relative levels beyond the Earth’s Van Allen Belts. Data collected and lessons learned from these initial uncrewed flights will help NASA engineers build better, more protective spacecraft in the future.

And once it does eventually get built, crews aboard the Lunar Gateway will maintain an expansive radiation sensor suite, including the Internal Dosimeter Array, designed to carefully and continually measure levels within the station as it makes its week-long oblong orbit around the moon.

“Understanding the effects of the radiation environment is not only critical for awareness of the environment where astronauts will live in the vicinity of the Moon, but it will also provide important data that can be used as NASA prepares for even greater endeavors, like sending the first humans to Mars,” Dina Contella, manager for Gateway Mission Integration and Utilization, said in a 2021 release.

NASA might use magnetic bubbles in the future

Tomorrow’s treks into interplanetary space, where GCR and SEP are more prevalent, are going to require more comprehensive protection than the current state of the art passive shielding materials and space weather forecasting predictions can deliver. And since the Earth’s own magnetosphere has proven so handy, researchers with the European Commission's Community Research and Development Information Service (CORDIS) have researched creating one small enough to fit on a spaceship, dubbed the Space Radiation Superconducting Shield (SR2S).

The €2.7 million SR2S program, which ran from 2013 to 2015, expanded on the idea of using superconducting magnets to generate a radiation-stopping magnetic force field first devised by ex-Nazi aerospace engineer Wernher von Braun in 1969. The magnetic field produced would be more than 3,000 times more concentrated than the one encircling the Earth and would extend out in a 10-meter sphere.

“In the framework of the project, we will test, in the coming months, a racetrack coil wound with an MgB2 superconducting tape,” Bernardo Bordini, coordinator of CERN activity in the framework of the SR2S project, said in 2015. “The prototype coil is designed to quantify the effectiveness of the superconducting magnetic shielding technology.”

It wouldn’t block all incoming radiation, but would efficiently screen out the most damaging types, like GCR, which flows through passive shielding like water through a colander. By lowering the rate at which astronauts are exposed to radiation, they’ll be able to serve on more and longer duration missions before hitting NASA’s lifetime exposure limit.

“As the magnetosphere deflects cosmic rays directed toward the earth, the magnetic field generated by a superconducting magnet surrounding the spacecraft would protect the crew,” Dr Riccardo Musenich, scientific and technical manager for the project, told Horizon in 2014. “SR2S is the first project which not only investigates the principles and the scientific problems (of magnetic shielding), but it also faces the complex issues in engineering.”

Two superconducting coils have already been constructed and tested, showing the feasibility in using them to build lightweight magnets but this is very preliminary research, mind you. The CORDIS team doesn’t anticipate this tech making it into space for another couple decades.

Researchers from University of Wisconsin–Madison's Department of Astronomy have recently set about developing their own version of CORDIS’ idea. Their Cosmic Radiation Extended Warding using the Halbach Torus (CREW HaT) project, which received prototyping funding from NASA’s Innovative Advanced Concepts (NIAC) program in February, uses “new superconductive tape technology, a deployable design, and a new configuration for a magnetic field that hasn't been explored before," according to UWM associate professor and researches lead author, Dr. Elena D'Onghia told Universe Today in May.

it's very spindly.
NASA

“The HaT geometry has never been explored before in this context or studied in combination with modern superconductive tapes,” she said in February’s NIAC summary. “It diverts over 50 percent of the biology-damaging cosmic rays (protons below 1 GeV) and higher energy high-Z ions. This is sufficient to reduce the radiation dose absorbed by astronauts to a level that is less than 5 percent of the lifetime excess risk of cancer mortality levels established by NASA.”

Or astronauts might wear leaden vests to protect their privates

But why go through the effort of magnetically encapsulating an entire spaceship when really it’s just a handful of torsos and heads that actually need the protection? That’s the idea behind the Matroshka AstroRad Radiation Experiment (MARE).

Developed in partnership with both the Israel Space Agency (ISA) and the German Aerospace Center (DLR), two of the MARE vests will be strapped aboard identical mannequins and launched into space aboard the Orion uncrewed moon mission. On their three-week flight, the mannequins, named Helga and Zohar, will travel some 280,000 miles from Earth and thousands of miles past the moon. Their innards are designed to mimic human bones and soft tissue, enabling researchers to measure the specific radiation doses they receive.

Its sibling study aboard the ISS, the Comfort and Human Factors AstroRad Radiation Garment Evaluation (CHARGE), focuses less on the vest’s anti-rad effectiveness and more on the ergonomics, fit and feel of it as astronauts go about their daily duties. The European Space Agency is also investigating garment-based radiation shielding with the FLARE suit, an “emergency device that aims to protect astronauts from intense solar radiation when traveling out of the magnetosphere on future Deep Space missions.”

Or we’ll line the ship hulls with water and poo!

One happy medium between the close-in discomfort of wearing a leaded apron in microgravity and the existential worry of potentially having your synapses scrambled by a powerful electromagnet is known as Water Wall technology.

“Nature uses no compressors, evaporators, lithium hydroxide canisters, oxygen candles, or urine processors,” Marc M. Cohen Arch.D, argued in the 2013 paper Water Walls Architecture: Massively Redundant and Highly Reliable Life Support for Long Duration Exploration Missions. “For very long-term operation — as in an interplanetary spacecraft, space station, or lunar/planetary base — these active electro-mechanical systems tend to be failure-prone because the continuous duty cycles make maintenance difficult.”

So, rather than rely on heavy and complicated mechanizations to process the waste materials that astronauts emit during a mission, this system utilizes osmosis bags that mimic nature’s own passive means of purifying water. In addition to treating gray and black water, these bags could also be adapted to scrub CO2 from the air, grow algae for food and fuel, and can be lined against the inner hull of a spacecraft to provide superior passive shielding against high energy particles.

“Water is better than metals for [radiation] protection,” Marco Durante of the Technical University of Darmstadt in Germany, told New Scientist in 2013. This is because the three-atom nucleus of a water molecule contains more mass than a metal atom and therefore is more effective at blocking GCR and other high energy rays, he continued.

The crew aboard the proposed Inspiration Mars mission, which would have slingshot a pair of private astronauts around Mars in a spectacular flyby while the two planets were at their orbital closest in 2018. You haven’t heard anything about that because the nonprofit behind it quietly went under in 2015. But had they somehow pulled off that feat, the plan was to have the astronauts poop into bags, sophon out the liquid for reuse and then pile the vacuum-sealed shitbricks against the walls of the spacecraft — alongside their boxes of food — to act as radiation insulation.

“It’s a little queasy sounding, but there’s no place for that material to go, and it makes great radiation shielding,” Taber MacCallum, a member of the nonprofit funded by Dennis Tito, told New Scientist. “Food is going to be stored all around the walls of the spacecraft, because food is good radiation shielding.” It’s just a quick jaunt to the next planet over, who needs plumbing and sustenance?

Boeing’s Starliner carried a ‘Kerbal Space Program’ character to the ISS

After two-and-a-half years of delays, Boeing’s Starliner capsule successfully docked with the International Space Station. It was an important milestone for a company that has, at least in the popular imagination, struggled to catch up with SpaceX. So it’s fitting how Boeing decided it would celebrate a successful mission.

When the crew of the ISS opened the hatch to Starliner, they found a surprise inside the spacecraft. Floating next to Orbital Flight Test-2’s seated test dummy was a plush toy representing Jebediah Kerman, one of four original “Kerbonauts” featured in Kerbal Space Program. Jeb, as he’s better known by the KSP community, served as the flight’s zero-g indicator. Russian cosmonaut Yuri Gagarin took a small doll with him on the first-ever human spaceflight, and ever since it has become a tradition for most space crews to carry plush toys with them to make it easy to see when they've entered a microgravity environment.

If you’ve ever played Kerbal Space Program, you have a sense of why it was so fitting Boeing decided to send Jeb to space. In KSP, designing spacecraft that will carry your Kerbonauts to orbit and beyond is no easy task. Often your initial designs will fall and crash as they struggle to fly free of Kerbin’s gravity. But you go back to the drawing board and tweak your designs until you find one that works. In a way, that’s exactly what Boeing’s engineers had to do after Starliner’s first test flight in 2019 failed due to a software issue, and its second one was delayed following an unexpected valve problem.

Boeing kept Jeb’s presence on OFT-2 secret until the spacecraft docked with the ISS. A spokesperson for the company told collectSPACE that Starliner’s engineering team chose the mascot in part because of the science, technology, engineering and math lessons KSP has to teach players. Jeb will spend the next few days with the crew of the ISS before they place him back in the spacecraft for its return trip to Earth.

Earth’s orbital economy of tomorrow could be worth trillions

As the scope and focus of human spaceflight has evolved, so too have NASA’s methods and operations. Regions that were once accessible only by the world’s most powerful nations are today increasingly within reach of Earth’s civilian population, the richest uppermost crusts, at least. The business community is also eyeing near Earth space as the next potentially multi-trillion dollar economy and is already working with the space agency to develop the technology and infrastructure necessary to continue NASA’s work in the decades following the ISS’ decommissioning. At SXSW 2022 last week, a panel of experts on the burgeoning private spaceflight industry discussed the nuts and bolts of NASA’s commercial services program and what business in LEO will likely entail.

As part of the panel, The Commercial Space Age Is Here, Tim Crain, CTO of Intuitive Machines, Douglas Terrier, associate director of vision and technology of NASA's Johnson Space Center, and Matt Ondler, CTO and director of engineering at Axiom Space, sat down with Houston Spaceport director, Arturo Machuca. Houston has been a spacefaring hub since NASA’s founding and remains a hotbed for orbital and spacelift technology startups today.

“We're going from a model of where we've had primarily government funded interests in space to one that's going to be focused a lot on the commercial sector,” Terrier said, pointing out that Axiom, Intuitive Machines, and “SpaceX down in Boca Chica” were quickly being joined by myriad startups offering a variety of support and development services.

“[Space is] the most important frontier for the United States to continue to have world leadership in and our goal is to ensure that we continue to do that in a new model that involves harnessing the innovation and the expertise from both inside and outside of NASA in the community represented here,” he continued.

Axiom is no stranger to working with both sides of the government contractor dynamic. It is scheduled to launch the first fully private crew mission to the ISS in April and plans to build, launch and affix a privately funded habitat module to the station by 2028. “This commercial space, very similar to the beginning of the internet,” Older explained. “There were a few key technologies that really allowed the internet to explode and so there's a few things in aerospace that will really allow commercial space to take off.”

“We think that the low Earth orbit economy is a trillion dollar economy, whether it's bioprinting, organs, whether it's making special fiber optic cable,” he continued. “I am completely convinced that 15 to 20 years from now we're going to be surrounded by objects that we can't imagine how we [had] lived without that were manufactured in space.”

“For the last 20 years humans have lived on the International Space Station continuously,” Terrier agreed. “My grandchildren are living in a world where humans live on the moon, where they'll get a nightly news broadcast from the moon? I mean, the opportunities from a societal- and civilization-changing standpoint is beyond comparison.. is actually beyond comprehension.”

The space-based economy is already valued at around $400 billion, Terrier added, with government investment accounting for around a quarter of the necessary upkeep funding and the rest coming from the private sector. He noted that NASA plays two primary roles as President Kennedy dictated in his 1962 “Why Go to the Moon” speech at Rice University: the scientific exploration of space for one, but also “to create the conditions for commercial success for United States in space,” Terrier said.

“It's synergistic in a sense that the more companies operating in space, the more of an industrial base we can call on — driving the price down, amortizing the access to space — so that NASA doesn't have to bear that cost,” he said. “It creates a role where there are things like exploring out among the planets, for which there isn't a business case — clearly the government needs to take the lead there. And then there are things where we're now commercializing low Earth orbit and that is success for everybody.”

This won’t be the first time that the US government hands off control of technology it previously had monopoly power over, Crain added. He points to NACA as “NASA for aviation in the 20s” and guided the government’s commercialization of aircraft technology.

“The only reason we can build a commercial space station is because of 25 years of flying the international space station and all the things that we've learned from NASA,” Ondler said. “NASA has learned about keeping humans alive [in space] for long periods of time. We're really leveraging so much history and so much of the government's investment to build our commercial station.”

Ondler pointed out that construction of the 7-foot x 3-foot Earth Observatory window being installed in Axiom’s station module, “by far the largest space window ever attempted,” would not have been possible without the knowledge and coaching of a former NASA space shuttle engineer. “her expertise, just her helping an engineer in one little area,” Ondler said, “allowed him to design a really good window on his first try.”

“We definitely stand on the shoulder of the great work that the space community has done until now, in terms of technology,” Crain agreed. The Apollo era, he notes, was dominated by producing one-off spacecraft parts meticulously designed for often singular use cases but that system is no longer sufficient. “The more we can make our supply chain, not custom parts, but things that have already been used already in a terrestrial market, the better off we are,” he said.

“Our mindset has to shift from ‘well, let's go all in, I'm building this first lander’ to doing it the first time already looking at the second lander,” Crain continued. “What are the differences between the two, how do we regularize that production in a way so that our design, the core of that vehicle, is basically the same from flight to flight?”

Once the Artemis missions begin in earnest, that supply chain will begin to stretch and expand. It will extend first to LEO, but should attempts to colonize the moon prove successful, it will grow to support life and business there, much like how towns continually grew along the trade and expansion routes of the American West. “You don't load up your wagons in Virginia and go straight to San Francisco,” Terrier said. “You stop in Saint Louis and reprovision, and people build up an economy around that.”

“The cool thing is that it's not just aerospace engineering anymore,” Crain added. He noted that, for example, retinal implants can be more accurately and efficiently printed in microgravity than they can planetside, but the commercial process for actually doing so has yet to be devised. “There's a completely different industry that we're gonna need. Folks to figure out, how do we build that [retinal implant printing] machine? How do we bring it and the raw materials up and down [from LEO]? We need marketing people and all those sort of folks. It's not just aerospace engineering and I think that's really what we mean when we talk about the trillion dollar economy.”

How to incinerate the International Space Station

It took NASA and its partners nearly four dozen trips between 1998 and 2010 to haul the roughly 900,000 pounds worth of various modules into orbit that make up the $100 billion International Space Station. But come the end of this decade, more than 30 years after the first ISS component broke atmosphere, the ISS will reach the end of its venerable service life and be decommissioned in favor of a new, privately-operated cadre of orbital research stations.

The ISS described by module
NASA

The problem NASA faces is what to do with the ISS once it’s been officially shuttered, because it’s not like we can just leave it where it is. Without regular shipments of propellant reactant to keep the station on course, the ISS’ orbit would eventually degrade to the point where it’s forward momentum would be insufficient to overcome the effects of atmospheric drag, subsequently plummeting back to Earth. So, rather than wait for the ISS to de-orbit on its own, or leave it in place for the Russians to use as target practice, NASA will instead cast down the station from upon high like Vader did Palpatine.

NASA is no stranger to getting rid of refuse via atmospheric incineration. The space agency has long relied on it in order to dispose of trash, expended launch vehicles, and derelict satellites. Both America’s Skylab and Russia’s Mir space stations were decommissioned in this manner.

Skylab was America’s first space station, for the whole 24 weeks it was in use. When the final 3-astronaut crew departed in early 1974, the station was boosted one last time to 6.8 miles further out in a 289-mile graveyard orbit. It was expected to remain there until the 1980s when increased solar activity from the waxing 11-year solar cycle would eventually drag it down into a fiery reentry. However, astronomers miscalculated the relative strength of that solar event, which pushed up Skylab’s demise to 1979.

In 1978, NASA toyed with the idea of using its soon-to-be-completed Space Shuttle to help boost Skylab into a higher orbit but abandoned the plan when it became clear that the Shuttle wouldn’t be finished in time, given the accelerated reentry timetable. The agency also rejected a proposal to blow the station up with missiles while still in orbit. The station eventually came down on July 11th, 1979, though it didn’t burn up in the atmosphere as quickly as NASA had predicted. This caused some rather large pieces of debris to overshoot the intended Indian Ocean target South-Southeast of South Africa and instead land in Perth, Australia. Despite NASA’s calculations of a 1 in 152 chance that a piece of the lab could hit someone during its de-orbit, no injuries were reported.

Mir's deorbit went much more smoothly. After 15 years of service it was brought down on March 23rd, 2001, in three stages. First, its orbit was allowed to degrade to an altitude of 140 miles. Then, the Progress M1-5 spacecraft — basically an attachable rocket designed specifically to help deorbit the station — docked with the Mir. It subsequently lit its engine for a little over 22 minutes to precisely put the Mir down over a distant expanse of the Pacific Ocean, east of Fiji.

As for the ISS’ oncoming demise, NASA has a plan — or at least a pretty good idea — for what’s going to happen. "We've done a lot of studies," Kirk Shireman, deputy manager of NASA's space station program, told Space.com in 2011. "We have found an orbit and a change in velocity that we believe is achievable, and it creates a debris footprint that’s all in water in an unpopulated area."

According to NASA standards — specifically NASA-STD-8719.14A, Process for Limiting Orbital Debris — the risk of human casualty on the ground is limited to less than 1 in 10,000 (< 0.0001). However, a 1998 study conducted by the ISS Mission Integration Office discovered that an uncontrolled reentry would carry an unacceptable casualty probability of between .024 to .077 (2 in 100 to 8 in 100). A number of controllable decommissioning alternatives have been discussed over the decades, including boosting the ISS farther into orbit in the event of an unexpected evacuation of the station’s crew.

"We've been working on plans and update the plans periodically," Shireman continued. "We don’t want to ever be in a position where we couldn’t safely deorbit the station. It's been a part of the program from the very beginning."

Beginning about a year before the planned decommissioning date, NASA will allow the ISS to begin degrading from its normal 240-mile high orbit and send up an uncrewed space vehicle (USV) to dock with the station and help propel it back Earthward. The ultimate crew from the ISS will evacuate just before the station hits an altitude of 115 miles, at which point the attached USV will fire its rockets in a series of deorbital burns to set the station into a capture trajectory over the Pacific Ocean.

NASA has not yet settled on which USV will be employed. A 2019 plan approved by NASA’s safety council, ASAP, relied on Roscosmos to outfit and send up another Progress spacecraft to do what it did for the Mir. However, that vehicle might not actually be available when the ISS is set to come down because Russia’s commitment to the ISS program terminates in 2024. In April of last year, Russian state media began making noise that the country would abandon the station entirely by 2025, potentially stripping parts from this station to reuse in its upcoming national station and leaving the ISS without a reliable way to break orbit. The ESA’s Automated Transfer Vehicle or NASA's Orion Multi-Purpose Crew Vehicle, though still in development, are both potential alternatives to the Progress.

“NASA is continuing to work with its international partners to ensure a safe deorbit plan of the station and is considering a number of options," spokeswoman Leah Cheshier told UPI via email in 2021, declining to elaborate on what those options might entail but adding that any deorbiting mission would be "shared by the ISS partnership and is negotiation-sensitive at this time."

The fall of the ISS is sure to be a spectacle on par with the international hubbub surrounding Skylab’s demise, but is still nearly a decade away and there is plenty of science still left to do. According to the January 2022 International Space Station Transition report:

The ISS is now entering its third and most productive decade of utilization, including research advancement, commercial value, and global partnership. The first decade of ISS was dedicated to assembly, and the second was devoted to research and technology development and learning how to conduct these activities most effectively in space. The third decade is one in which NASA aims to verify exploration and human research technologies to support deep space exploration, continue to return medical and environmental benefits to humanity, continue to demonstrate U.S. leadership in LEO through international partnerships, and lay the groundwork for a commercial future in LEO.

More than half of the experiments performed aboard the ISS nowadays are for non-NASA users, according to the report — including nearly two dozen commercial facilities — “hundreds of experiments from other government agencies, academia, and commercial users to return benefits to people and industry on the ground.” This influx of orbital commercial activity is expected — and being actively encouraged — to further increase over the next few years until humanity can collectively realize Jeff Bezos’ dream of building a low Earth orbit mixed-use business park.

Billionaire space barons want to build ‘mixed-use business parks’ in low Earth orbit

The Space Race is no longer a competition between the global superpowers of the world — at least not the nation-states that once vied to be first to the Moon. Today, low Earth orbit is the battleground for private conglomerates and the billionaires that helm them. With the Mir Space Station having deorbited in 2001 after 15 years of service and the ISS scheduled for retirement by the end of the decade, tomorrow’s space stations are very likely to be owned and operated by companies, not countries. In fact, the handover has already begun.

“We are not ready for what comes after the International Space Station,” then-NASA-administrator Jim Bridenstine explained at a hearing of the Senate Commerce Committee’s space subcommittee in October. “Building a space station takes a long time, especially when you’re doing it in a way that’s never been done before.”

NASA is on board with this transference, having drafted and published its Plan for Commercial LEO Development (CLD) in 2019, which calls for “a robust low-Earth orbiteconomy from which NASA can purchase services as one of many customers,” as part of the Human Exploration and Operations Mission Directorate at Johnson Space Center. The CLD plan lays out the agency’s necessary steps towards establishing a commercial space station ecosystem. These start with allowing private corporations “to purchase ISS resources,” i.e. lease space on the station for commercial activities, “allow companies to fly private astronauts to the ISS,” which SpaceX did last April, as well as initiating “a process for developing commercial LEO destinations” and working to “stimulate demand” for those destinations and services.

NASA CLD goals
NASA

“NASA by its very nature is an exploration agency,” the space agency wrote in 2019. “We like to challenge the status quo and discover new things. We like to solve impossible problems and do amazing things. NASA also realizes that we need help and do not know everything. We can only accomplish amazing things by teamwork. NASA is reaching out to the US private sector to see if they can push the economic frontier into space.”

Space exploration has been a public-private cooperative effort since the founding days of NASA. For example, the expendable launch vehicles that put satellites into LEO from 1963 to 1982 — the Titan by Martin Marietta, the Atlas from General Dynamics, McDonnell Douglas’ Delta rockets, and the Scout from LTV Aerospace Corporation — were all built by private aerospace companies as federal contractors but operated by the US government. “The US government essentially served as the only provider of space launch services to the Western world,” wrote the FAA. This changed in the ‘70s when the European Space Agency developed its own ELV, the Ariane, and NASA swapped out its own rockets for the Space Shuttle program, which became the nation’s default satellite launch system.

Private space launches, like what SpaceX and Northrop Grumman do, got their start in the US way back in 1982 when Space Services sent up its Conestoga rocket prototype, really the repurposed second stage of a Minuteman missile. The size, number and severity of hoops the company had to jump through to get launch clearance was enough to convince members of congress to introduce legislation streamlining the process, eventually leading then-President Ronald Reagan to declare expanding private sector involvement in civil space launches to be “a national goal.” We’ve seen a number of notable milestones in the decades since including the launch of the Pegasus rocket operated by the Orbital Sciences Corporation in 1990, which was the first fully privately developed and air-based launch vehicle to reach space, Dennis Tito’s ride aboard a Soyuz rocket to the ISS in 2001 to become the Earth’s first space tourist, and the first SpaceX Dragon Capsule mission in 2010, the first time a privately-operated spacecraft was both launched into and recovered from orbit.

The idea of letting private space companies build, launch and operate their own stations grew largely from these earlier cooperative arrangements as well as from partnerships made via the International Space Station US National Laboratory, which is managed by the non-profit organization, the Center for Advancement of Science in Space.

“We leverage our core competencies, facilitate public-private partnerships, and utilize the platform capabilities and unique operating environment of the space station,” the ISSNL’s mission statement reads. ”We create demand, incubate in-space business ventures, provide access for and awareness of fundamental science and technological innovation, and promote science literacy of the future workforce.” More than 50 companies have already partnered with the ISSNL aboard the space station and the agency is currently working with 11 others to “install 14 commercial facilities on the station supporting research and development projects for NASA.”

Axiom's ISS-grown space station

Axiom AX-1
Axiom Space

At the forefront of this commercialization effort is the Axiom Space corporation. The Houston-based company has been contracted by NASA to construct a habitat module for the ISS, install it aboard the station in September of 2024 and then detach the module for use as an independent space platform once the ISS is eventually deorbited by 2028.

“Axiom's work to develop a commercial destination in space is a critical step for NASA to meet its long-term needs for astronaut training, scientific research and technology demonstrations in low-Earth orbit,” NASA’s Bridenstine, said in a 2020 statement.

"We are transforming the way NASA works with industry to benefit the global economy and advance space exploration," he added. "It is a similar partnership that this year will return the capability of American astronauts to launch to the space station on American rockets from American soil."

Axiom has tapped Thales Alenia Space to build both the module itself and a meteoroid shield for the Axiom Node One (a pressurized segment that will connect the Axiom hub onto the ISS).

"The legacy of the International Space Station structure is one of safety and reliability despite huge technical complexity," Axiom Space CEO, Michael Suffredini, said in a 2020 statement. "We are thrilled to combine Axiom's human spaceflight expertise with Thales Alenia Space's experience to build the next stage of human settlement in low Earth orbit from a foundation that is tried and tested."

Axiom has also struck a deal with SpaceX to ferry four “Axionauts” — yes, that’s really what they’re calling them — up to the ISS to train for life in microgravity. The 8-day mission, dubbed Ax-1, was supposed to be led by former NASA astronaut Michael Lopez-Alegria, who would be joined by a trio of space tourists, each of whom shelled out $55 million to ride along. The trip was originally slated to take place in February, however, it was repeatedly delayed due to “additional spacecraft preparations and space station traffic” and is currently scheduled to take place on March 30th. The company is already at work on missions Ax-2 through -4 and has reserved a set of Dragon capsules, though the crew manifests have not yet been finalized.

In addition to the crew habitat, Axiom is building a secondary commercial capsule for Space Entertainment Enterprise (SEE), a startup co-producing Tom Cruise’s latest joint which will be shot at least partially in space later this year. The SEE-1 is scheduled for installation in December, 2024 and will host both a production studio and — somehow — a sports arena as well. Bring on the Battle Rooms.

Nanoracks’ Starlab

Nanoracks Starlab
Nanoracks

While Axiom Space is trying to bud its orbital platform from the ISS like a polyp, space service company Nanoracks is working to build a free-flying station of its own, with help from Voyager Space and Lockheed Martin, as well as a $160 million CLD contract from NASA. That contract runs through 2025 and “will be supplemented with customer pre-buy opportunities and public-private partnerships,” per a recent Lockheed press release.

Nanoracks is already deeply involved in commercial ventures to, from and on the ISS. Founded in 2009, the company has delivered some 1,300 research payloads and small satellites to the station and currently rents space for research modules aboard its Nanoracks External Platform on the outside of the ISS. Its wide-bore Bishop airlock was the first permanent commercial addition to the ISS.

The company is developing a line of smaller self-contained orbital platforms, dubbed Outposts, which could serve a variety of purposes from refueling stations for satellite constellations, to cubesat launchers and advanced technology testbeds to hydroponic greenhouses. The first iteration is expected to be launched by 2024.

The Starlab itself, which should be ready for business by 2027, will consist of an inflatable 340 cubic meter habitat built by Northrop (similar to the Bigelow Expandable Activity Module, or BEAM, that was demonstrated on the ISS in 2016) that can accommodate up to four crew members simultaneously. Four solar panels will generate 60 kW of power for the station to use.

With just under half the usable interior space as the ISS, Starlab’s operations will be centered around its cutting-edge George Washington Carver (GWC) Science Park which includes a biology lab space, plant habitation lab, materials research lab and an unstructured workbench area enabling the station to offer services ranging from fundamental research and astronaut training to space tourism. However, tourists will take a backseat to scientific endeavors aboard the station. “Space tourism is what captures the headlines, but to have a sustainable business model, you really do need to move beyond that,” Nanoracks CEO Jeffrey Manber told TechCrunch last October.

Blue Origin’s Orbital Reef

Blue Origin's Orbital Reef
Blue Origin

With the “pay NASA to pay us to ferry Artemis gear to the moon” plan having been thoroughly imploded by the US federal court system, Jeff Bezos’ Blue Origin has set its sights on a goal slightly closer to Earth. The space launch and tourism company has partnered with Sierra Space to build, launch and operate a "mixed-use business park" in space, dubbed Orbital Reef.

The 830 cubic meter structure is still in its early planning stages, having garnered a $130 million Space Act contract from NASA last December for its development, and isn’t expected to launch until at least the second half of the 2020s. Few other details have yet been confirmed.

"Now, anyone can establish an address in orbit," Blue Origin declared last October when unveiling the project. "Orbital Reef expands access, lowers the cost and provides everything needed to help you operate your business in space." This from the company that got $28 million for a single seat aboard last year’s inaugural New Shepard flight.

Northrop Grumman’s Cygnus-based space station

Northrop Grumman Cygnus
NASA

NASA’s third Space Act agreement recipient from last December is defender contractor Northrop Grumman, which plans to repurpose one of its existing Cygnus spacecraft for use as an orbital station.

Like Orbital Reef, Northrop’s as-of-yet unnamed design is still in its earliest stages of development, though the company does expect the new station to accommodate up to four permanent crew members once it does initiate operations and could at least double that number as the station is expanded throughout its estimated 15-year service life.

Under the terms of the $125 million agreement, "the Northrop Grumman team will deliver a free-flying space station design that is focused on commercial operations to meet the demands of an expanding LEO market," Steve Krein, vice president of civil and commercial space at Northrop Grumman, said in a statement last December. "Our station will enable a smooth transition from International Space Station-based LEO missions to sustainable commercial-based missions where NASA does not bear all the costs, but serves as one of many customers."

Of course, the US and its commercial constituents are far from the only parties interested in colonizing LEO for business interests. China launched the Tianhe core module of its new 3-crew member Tiangong space station into orbit this past April with the remaining Experiment Modules and separate space telescope going up between this year and 2024. Similarly, India’s space agency is developing a station of its own with plans to launch it by the end of the decade, following the country’s upcoming Gaganyaan mission, the first crewed orbital spacecraft to launch as part of the Indian Human Spaceflight Programme.

These propositions are only the start of humanity’s expansion into the stars from low Earth orbit, to the Lunar Gateway, to Mars and beyond. But the question isn’t so much of when and how we’ll do so, but rather, who will be able to afford to?