Silicon Valley Creator Mike Judge Reveals Season 3 Plans


The creator of the show Mike Judge also worked as a programmer at the start of his career. The hit series was greatly inspired by his personal experiences. The comedy series consisted of eight...

Silicon Valley Revitalized


Silicon Valley booming with higher incomes, housing prices, but middle class, poor left behind SAN JOSE, Calif. (AP) — Jobs, income and investment keep soaring in Silicon Valley, but the growth is...

Researchers create self-healing batteries inspired by artificial robot skin

Researchers create selfhealing batteries inspired by robot 'skin'

In the race to create a better battery, scientists have gazed longingly at silicon, prized for its ability to hold copious energy during charging. The material has a significant drawback, however: it likes to expand during said charging, causing it to eventually crack and become useless. However, scientists at Stanford's SLAC laboratory have developed silicon electrodes that repair themselves, inspired by -- of all things -- the latest research into robotic skin. They created a silicon polymer with weak chemical bonds which attract each other when the material cracks, allowing it to regain its shape in a few hours (as pictured above). The team managed a respectable 100 discharge cycles with a battery that used the material, a promising start but still far from their goal of 3,000 cycles for an electric vehicle. You can add that to the growing pile of promising battery tech that may amount to something, some day -- but at least the odds keep getting better.

Filed under: , ,

Comments

Via: Forbes

Source: Nature

Intel announces Quark system on a chip, the company’s smallest to date

The hits keep coming from IDF. After showing off svelte new 14nm silicon built for laptops, CEO Brian Krzanich announced a brand new SoC series named Quark. It's the smallest SoC the company has ever built, one-fifth the size of an Atom chip, and is built upon an open architecture meant so spur its use. Early on in his keynote, Krzanich said that Intel plans to "lead in every segment of computing," and Quark is positioned to put Intel in wearables -- and, in fact, he even showed off a prototype smartwatch platform Intel constructed to help drive wearable development. And, Intel President Renee James pointed out that Quark's designed for use in integrated systems, so we'll be seeing Quark in healthcare and municipal use cases, too. Unfortunately, no details about the new SoC's capabilities or specs are yet available, but we can give you some shots of Intel's wearable wristband prototype in our gallery below.%Gallery-slideshow83631%

Filed under:

Comments

Researchers claim ‘almost instantaneous’ quantum computing breakthrough

DNP OSU MIM diodes

Silicon is great, but we're tickling the edges of its speed limit. As a result, researchers at Oregon State University have been plugging away at a low-cost, faster alternative for the past three years: tiny quantum devices called metal-insulator-metal diodes, or MIM diodes for short. Silicon chips involve electrons traveling through a transistor, but MIM diodes send electrons "tunneling" through the insulator in a quantum manner, such that they appear "almost instantaneously" on the other side. The tech's latest development doubles the insulator fun -- transforming the MIM into a MIIM (pictured above) -- giving the scientists another method for engineering quantum mechanical tunneling. With MIIMs, super fast transistor-less computers could be around the corner. The Oregon researchers aren't bold enough to put a date on making any of this happen outside of the lab, but they promise entire new industries may "ultimately emerge" from their work, and we're far too under-qualified to doubt them.

Filed under: ,

Comments

Source: Oregon State University

NXP’s silicon fingerprinting promises to annoy the heck out of ID hackers

NXP's silicon fingerprinting promises to annoy the heck out of ID hackers

It's 2013 and white hat hackers like Adam Laurie are still breaking into ID chips that are supposed to be secure. How come? Partly it's the way of the world, because no man-made NFC or RFID security barrier can ever be truly impervious. But in practical terms, a chip's vulnerability often stems from the fact that it can be taken apart and probed at a hacker's leisure. The secure element doesn't necessarily need to have power running through it or to be in the midst of near-field communication in order to yield up its cryptographic key to a clever intruder who has sufficient time and sufficient desire to breach the security of a smartphone, bank card or national border.

Which brings us to the latest device in NXP's SmartMX2 range -- a piece of technology that is claimed to work very differently and that is expected to hit the market next year. Instead of a traditional key stored in the secure element's memory, every single copy of this chip carries a unique fingerprint within the physical structure of its transistors. This fingerprint (aka Physically Unclonable Function, or PUF) is a byproduct of tiny errors in the fabrication process -- something chip makers usually try to minimize. But NXP has found a way to amplify these flaws in a controlled way and use them for identification, and it'd take a mightily well-equipped criminal (or fare dodger, or Scrabble cheater) to reverse engineer that.

Filed under: , ,

Comments

USC battery wields silicon nanowires to hold triple the energy, charge in 10 minutes

USC battery wields silicon nanowires to hold triple the energy, charge in 10 minutes

There's no shortage of attempts to build a better battery, usually with a few caveats. USC may have ticked all the right checkboxes with its latest discovery, however. Its use of porous, flexible silicon nanowires for the anodes in a lithium-ion battery delivers the high capacity, fast recharging and low costs that come with silicon, but without the fragility of earlier attempts relying on simpler silicon plates. In practice, the battery could deliver the best of all worlds. Triple the capacity of today's batteries? Full recharges in 10 minutes? More than 2,000 charging cycles? Check. It all sounds a bit fantastical, but USC does see real-world use on the horizon. Researchers estimate that there should be products with silicon-equipped lithium-ion packs inside of two to three years, which isn't long to wait if the invention saves us from constantly hunting for the nearest wall outlet.

Filed under:

Comments

Via: Gizmodo

Source: USC