In 2025, AI and EVs gave the US an insatiable hunger for power

You may be surprised to learn electricity only accounts for 21 percent of the world’s energy consumption. Fossil fuels and the rest all play their part to make the world go around, but their role is likely to diminish no matter what happens. The International Energy Agency believes electricity’s share of global energy consumption is going to double in the next decade alone. You all know the causes: Electrification, EVs, data centers and AI mean the planet needs to dramatically increase its power generation, transmission and storage capacity. It’s a shame, then, that the world is nowhere near ready to satisfy such an outrageous surge in demand. 

Re-learning to love the atom

The US has certainly spent the year opening doors to dramatically increase domestic energy production. Part of that has to give the signal that the US will embrace nuclear power in ways it hasn’t for generations. This January, an executive order titled Unleashing American Energy included an instruction for the government to eliminate rules and regulations related to power generation. Its primary focus was to destroy environmental regulations limiting the extraction of oil, natural gas and coal, but also to remove roadblocks to the construction of new nuclear plants. Then, in May, a subsequent order declared a desire to ensure the deployment of “advanced nuclear technologies.” 

As the driving force behind the AI push, big tech has made some high profile moves to buy up extra generation capacity. Meta signed a 20-year deal with Constellation to own the output of the Clinton Power Station, preserving the 1.1GW facility once its state tax credit expires next year. Microsoft has its own 20-year deal with Constellation to own the power generated by reactor 1 at Three Mile Island, now renamed the Crane Clean Energy Center. On November 18, that project was also given the backing of the Department of Energy which authorized a $1 billion loan. But even without the backing of big tech, other mothballed reactors are being restarted, like the Palisades plant in Michigan. Earlier this year, the Department of Energy handed out a $1.52 billion loan to get the facility, capable of generating 800MW, back up and running. 

Big tech is also betting on the future of nuclear power, signing deals with a number of startups looking to build out a new generation of reactors. Google, for instance, has backed Kairos Power and its plan to build a series of small, modular reactors. Amazon, meanwhile, invested in X-Energy and has published plans for its own buildout in Washington State. 

It’s not just the US that is learning to fall back in love with nuclear power, as the rest of the world is also building out new capacity. The World Nuclear Association says there are 70 reactors currently under construction across 15 countries. Russia, India, Argentina, Turkey, South Korea, Japan, and Brazil, to name just a few, are all working on new reactors. 

China on its own is presently building 33 reactors and, as Nuclear Business Platform reported earlier this year, greenlit a further 10 this April. That same report adds that China’s policy of producing multiple reactors at a time has seen costs crater. It says that while the UK’s two new reactors at Hinkley Point will cost in excess of $60 billion, each of these new reactors will cost $2.7 billion. 

Bridging the nuclear gap

coal handling in a port
coal handling in a port
Indigo Division via Getty Images

Building a nuclear reactor is not a swift process, and construction of a facility can take the better part of a decade. You can add on a few more years if you include the necessary procedural steps that need to be undertaken before a single piece of concrete is poured. Consequently, any major shift in the US’ power generation fleet will be measured in generations, rather than years. It’s a concern that, for all of the attention nuclear power is getting, it’s merely a smokescreen for a renewed push for fossil fuel extraction.

After all, one major casualty from the Big, Beautiful Bill was the eradication of subsidies for the US’ solar industry. As we reported back in July, the act has kicked the legs out from domestic solar panel manufacturing, handing renewable energy dominance to China. This goes hand in hand with the US Department of Energy setting up a $625 million funding stream to revive America’s coal industry and recommission old power plants. Or that it is also awarding contracts to grow America’s strategic petroleum reserve

Back in September, Energy Secretary Chris Wright made the implausible claim to BBC News that fossil fuel extraction was nothing to worry about as fusion power would be on the grid in the next decade. Wright, himself the former CEO of fracking company Liberty Energy, was taken to task by a number of climate experts for publishing a report riddled with “misleading or fundamentally incorrect” assertions. Similarly, on November 20, the Department of Energy reshuffled its org chart to eliminate several departments responsible for renewable energy and energy efficiency while forming the Office of Fusion. 

Solar’s unstoppable rise

This stunning aerial view captures an  array of solar panels arranged in neat, parallel rows across the landscape. From above, the panels shimmer under the bright sunlight, creating a striking contrast against the natural terrain below. The organized rows of solar panels stretch across acres of land, symbolizing the growing global shift toward renewable energy. The grid-like pattern highlights the efficiency and scale of modern solar farms, contributing to sustainable energy production.This high-resolution image showcases the incredible reach and potential of solar power as a clean, renewable energy source. Whether situated in rural fields, expansive deserts, or atop rooftops, these solar panels represent a major step toward reducing carbon footprints and combating climate change. The solar farm's orderly rows and reflective surfaces create a visually appealing scene, demonstrating both technological innovation and environmental responsibility.
This stunning aerial view captures an array of solar panels arranged in neat, parallel rows across the landscape. From above, the panels shimmer under the bright sunlight, creating a striking contrast against the natural terrain below. The organized rows of solar panels stretch across acres of land, symbolizing the growing global shift toward renewable energy. The grid-like pattern highlights the efficiency and scale of modern solar farms, contributing to sustainable energy production.This high-resolution image showcases the incredible reach and potential of solar power as a clean, renewable energy source. Whether situated in rural fields, expansive deserts, or atop rooftops, these solar panels represent a major step toward reducing carbon footprints and combating climate change. The solar farm's orderly rows and reflective surfaces create a visually appealing scene, demonstrating both technological innovation and environmental responsibility.
Diane Keough via Getty Images

The US may have kneecapped its domestic solar industry, but it may not be enough to defeat renewables’ momentum. In October, the International Energy Agency projected renewable energy will grow by 4.6 TW by 2030 — a figure equal to the combined generation capacity of China, the EU and Japan combined. 77 percent of that figure is expected to come from solar power alone, despite the loss of subsidies in the US and less favorable circumstances in China. 

The domestic US forecast has been revised downward significantly as a consequence of its policy choices. But despite this, the obvious benefits of solar power haven’t gone away even if the price may be higher than it was at the start of the year. It remains the fastest and cheapest way to add new power in many countries, and can be installed on a grid or individual basis. Not to mention its utility in remote areas with poor generation resources, where it can reduce dependency on fossil fuels. This year, clean energy think-tank Ember reported on the growth of solar power in the last decade, and how it went from adding just one percent of global power generation in 2015 to 8.8 percent in the first half of 2025.

“AI demand for electricity is the macro driver of US made solar,” said Rob Gardner, VP at the Solar Manufacturers for America Coalition. “AI investments can’t deliver expected returns without quickly deployed power, and US solar is the fastest and cheapest to deploy,” he said. Gardner cited a recent FERC forecast which predicts that 92.6GW of solar will come online between now and July 2028. 

The dream of fusion

Construction inside the reactor of ITER.
Construction inside the reactor of ITER.
ITER

The US is pinning a lot of its hopes on fusion power to wipe away the debt of our fossil fuel past. Earlier this year, the Department of Energy released a roadmap to get fusion out of the lab and into the world. It wants to coordinate the remaining resources of the federal government to close the fusion world’s “critical science, materials and technology gaps.” In the next three years, officials have been tasked with designing facilities for reactors and developing sources of fuel. Within the next decade, it’s hoped the government will be able to offer large-scale fuel cycle plants to help private sector plants start operations.

If fusion power can be harnessed, it has many of the same upsides as nuclear fission with a lot fewer downsides. If nuclear fission harnesses the energy released when an atom is broken apart, then fusion harnesses the energy released when two smaller atoms are smashed together to create a larger one. It harnesses the same principle as you’ll find inside our sun: Superheated hydrogen atoms fusing to create helium. And while nuclear fusion requires radioactive material, we can source deuterium and tritium from water and lithium. 

ITER (International Thermonuclear Experimental Reactor) is a giant experimental fusion reactor under construction in France which, when operational, will be the world’s largest. It is backed by a coalition of nations, including the US, EU and China, and has the aim of both generating power and developing the technologies necessary to make Fusion a reality. The organization claims that there is enough of both materials available on the planet to run fusion plants for at least a thousand years, if not longer. There are also a raft of safety benefits, as there’s no creation of the sort of long-lived and dangerous waste associated with nuclear power, no risk of a meltdown, and its raw materials can’t be used to make weapons. 

But while fusion is entirely possible, and on paper could be the salve to all of the world’s energy ills, it’s not yet a reality. There are a large number of engineering challenges sitting between us and a viable commercial reactor. The shift that has happened this year is that fusion is now being treated as a “strategic national priority,” according to the International Atomic Energy Agency. More than 160 fusion facilities are operational worldwide, each one looking to explore ways of solving the hard problems standing between us and limitless power.

But as well as ITER, there are other major nations working to build out their own fusion capacity. The biggest would likely be China’s Experimental Advanced Superconducting Tokamak (EAST) which has already set a record for energy generation. At the start of this year, it was able to produce a steady state for 1,066 seconds

But what we are seeing now, which may offer some degree of hope, is the surge in interest from the private sector. Companies like Commonwealth Fusion, Type One Energy, Helion and Pacific Fusion are all working on their own fusion facilities. These projects have received billions in funding, but it’s likely all will need time to work out if their approaches are viable. 

Stuart White is a spokesperson for Tokamak Energy, a British-Japanese startup spun out from the UK’s Atomic Energy Authority which is developing its own fusion technologies. In 2022, the company’s own reactor was able to reach a plasma temperature of 100 million degrees celsius. “It’s an incredible achievement but that isn’t going to power homes around the UK or anywhere,” he said. White believes the fusion world will spend the next decade “scaling up,” projects to find the right pathway to building commercial reactors. He cited national programs, like the UK’s STEP which is targeted to begin working in 2040, while the US’ plan for the mid-2030s he feels is “aggressive.”

White also explained that, as equally important as solving the key physics issues, is building out the supply chain to actually make the equipment. He cited the importance of manufacturing in Japan and China to produce the hardware necessary to build fusion reactors. And that this process, while time consuming now, will help accelerate the eventual development of the technology down the line. White added that another positive sign is that regulators aren’t likely to want to scrutinize fusion reactors with the same intensity as they do nuclear reactors. That will both speed up the construction of new facilities and reduce costs when they do eventually enter service. 

What’s clear, however, is that Fusion is not going to be able to swoop in and decarbonize the world’s energy needs in the sort of time scale it’s likely to be required. (White said it is likely to arrive in time to complement other clean sources of energy over the next half century, rather than so quickly that every other power station gets mothballed instantly.) Consequently, the government of the world must keep prioritizing the rollout of renewables rather than hoping that fusion will simply bail everyone out in the next decade.

This article originally appeared on Engadget at https://www.engadget.com/science/in-2025-ai-and-evs-gave-the-us-an-insatiable-hunger-for-power-133000673.html?src=rss

EU pledges 90 percent cut to carbon emissions by 2040

The European Union has provisionally agreed to reduce greenhouse gas emissions by 90 percent (based on 1990 levels) by 2040, the EU parliament announced in a press release. That goes beyond the goals of most other major economies, including China, but falls short of the original one recommended by the EU's climate science advisors. "The target delivers on the need for climate action while safeguarding our competitiveness and security," said Denmark's minister Lars Aagaard, who helped negotiate the deal. 

The new accord — a vital step in the bloc's long-term goal of achieving climate neutrality by 2050 — was a political compromise months in the making. On one hand, countries like Poland and Hungary argued that deeper cuts would be too onerous for industries already facing high energy costs. And on the other, members including Spain and Sweden said action was needed to help blunt extreme weather events and allow the EU to catch up with China in green tech manufacturing. 

To achieve the target, European industries will need to reduce emissions by 85 percent and sell carbon credits to developing nations to make up the balance. The EU also agreed on an option to use additional international carbon credits (up to five percent) to soften the impact on industry and to delay a carbon tax for fuel by a year to 2028. 

Even with the reduced targets Europe is more committed than all other major polluters, having already cut emissions 37 percent from 1990 levels. During the same period, the US has only managed a reduction of about 7 percent, according to Statista. And under the Trump administration, the US has once again pulled out of the Paris climate accord, scrubbed references to climate change from government sites and promoted polluting energy sectors like coal and gas. 

The deal must still be ratified by the EU parliament and individual countries to become law. Normally, though, that's a formality for such pre-agreed deals.

This article originally appeared on Engadget at https://www.engadget.com/general/eu-pledges-90-percent-cut-to-carbon-emissions-by-2040-133919256.html?src=rss

US Department of Transportation doubles down on gas, cuts fuel efficiency standards

The Department of Transportation under President Donald Trump is moving to reverse more of the climate policies that had been enacted by President Joe Biden. Under a proposed rulemaking by the National Highway Traffic Safety Administration, fuel efficiency standards for cars and light trucks in model year 2031 will be reduced to an average of 34.5 miles per gallon, down from the standard of 50.4 miles per gallon that was part of Biden's plans to encourage more adoption of electric vehicles among US drivers. 

The move was expected since Trump re-took office. Transportation Secretary Sean Duffy ordered the NHTSA to review fuel efficiency standards in January a day after he assumed the title. The current administration also ended a tax credit for buying electric vehicles over the summer. In the meantime, international manufacturers are racing ahead in their progress on building better EVs, offering other markets more exciting models that won’t arrive in the US thanks to tariffs.

While Trump's announcement today claimed that the change would reduce the average cost of a new car by $1,000 and offer a savings of $109 billion over five years, gas prices are on track to increase if the Environmental Protection Agency does successfully repeal the finding that climate change causes human harm. Plus there's the incalculable financial and human cost of a growing number of catastrophic weather events that have been predicted if the planet continues to get warmer.

This article originally appeared on Engadget at https://www.engadget.com/transportation/us-department-of-transportation-doubles-down-on-gas-cuts-fuel-efficiency-standards-234542939.html?src=rss

My family keeps stealing my Dreo heater, so I’m buying another while it’s on sale for Black Friday

As I write this, my Dreo Whole-Room heater is swirling warm air around me in a hushed, mellow sweep. I personally paid the full $100 for the privilege but right now, you can currently snag yours for $15 less, thanks to Black Friday's benevolence. Either way — this little guy is worth it. I bought mine a few weeks ago when the leaves started to turn and I knew winter was coming for my home office. I needed something to replace the aging plug-in radiator I used in years past and, after some research, this seemed like just the thing. 

There are no heating vents in my office, because it was once the front porch. Whoever built the addition did a solid job — including constructing the walls out of a material (brick? cinder block? titanium?) that no nail can penetrate, let alone duct work. The hand-me-down plug-in radiator I used last year wasn't cutting it — only keeping me warm if I stood bestride it. If I'd had the budget for it, I'd have picked up my editor's most recent heater find, but $100 felt like my limit. 

I can report that my purchase of Dreo's heater has been worth it. It stands about a foot tall and just about as wide, but it really pumps out the heat. I originally mistook the displayed "H1" for "high," so I thought the heat output was fine, but not great. Then I pushed the plus button and realized there's an H2 and H3, which is where things really get spicy. 

It can oscillate left and right in a 90-degree arc, as well as nod up and down 60 degrees. It can even do both at the same time. I anthropomorphize everything, so when it swings both horizontally and vertically, I see a baby woodland owl inspecting its forest habitat in awe. 

Unlike that radiator heater, this heats up nigh-on instantaneously. Within seconds, I can feel the warmth, and within a minute my fingers defrost enough so I can type. But, since it is a ceramic heater, the heat largely disappears when you turn it off (at which point it goes through a 30 second cool-down to push the remaining heat out of the vents). The air in the room will stay as warm as your insulation allows, but I do use the remote to click it on and off throughout the day.  

The exterior is largely plastic, and I was worried it would have a strong off-gassing smell. Straight out of the box, the chemical tinge was noticeable, but after leaving it sitting out for a couple days, it calmed right down. I haven't put the timer — or the tip-over safety function for that matter — to the test, but I'm happy to know that both are available. And, as advertised, it's super quiet, emitting a pleasant hum that keeps me company as I work. 

It's also quite portable. Which is why it constantly makes the rounds around my house. My kid likes to have it pointed at him when he eats breakfast before school. My husband grabs it to de-ice the bathroom during a shower. I honestly love that this little heater can help them stay comfortable without having to crank up the central heating to warm up the whole house, but I do wish I didn't have to hunt it down at the start of a workday. I guess should just go ahead and grab another.

This article originally appeared on Engadget at https://www.engadget.com/deals/my-family-keeps-stealing-my-dreo-heater-so-im-buying-another-while-its-on-sale-for-black-friday-160923723.html?src=rss

Polestar EVs can power your home in California

EV maker Polestar has announced that it's bringing bi-directional charging — the ability for an electric car to be tapped as a battery for your home or the grid — to Polestar 3 owners who live in California. The feature is one of several ways EV owners can save money with their electric car, by either using less energy overall, or receiving credits for providing their excess power to the grid.

Polestar's bi-directional charging feature uses direct current, according to the company, and enables "V2H functionality for Polestar 3 customers on the 400 Volt electrical architecture." Polestar is offering the feature in partnership with home energy company dcbel, who helps administer a California Energy Commission program for installing "home energy stations" that can manage multiple clean energy sources in residential homes, including EVs with bi-directional charging. Polestar claims that using dcbel's Ara system, customers can "reduce charging costs by up to $1,300 per year and use their car as an energy backup during blackouts for up to 10 days."

The ability to send excess charge from an EV battery back into your home was originally a major selling point of Ford's F-150 Lighting. Bi-directional charging has also shown up on GM's EV lineup and the third-generation Nissan Leaf. Polestar says it'll continue the development of the bi-directional charging capabilities of its cars and "plans to introduce a wider offer in the future." While this partnership is the first time the EV maker is offering the charging feature in the US, Polestar already offers bi-directional charging to customers in Germany via a home charger it developed with Zaptec.

If you live in California and own a Polestar 3, you can apply for rebates on a home energy station at dcbel's website so you can try the feature for yourself.

This article originally appeared on Engadget at https://www.engadget.com/transportation/evs/polestar-evs-can-power-your-home-in-california-220215757.html?src=rss

Your next Heineken beer may be brewed with steam from a 100MWh heat battery

Brewing beer can be a highly polluting activity because gas boilers are normally used to create the enormous volumes of steam required for the process. Now, Heineken is teaming with a battery and electric company on a new solution at its Lisbon, Portugal brewery. They're building a 100MWh grid- and solar-powered heat battery that will generate the steam while reducing carbon emissions, Heineken announced

Heat batteries use materials like ceramics to store and then release heat, much as a regular battery stores and releases electricity. Heineken's brewery will employ a Rondo Heat Battery (RHB) built with refractory bricks that capture heat, then convert it to steam. When completed, it will be powered by onsite solar and renewable electricity from EDP and supply 7 MW of steam — enough to run the brewery 24 hours a day. When the system goes live in April 2027, it will be one of the largest heat battery systems in the beverage industry.

It's a significant milestone for the industry, as high temperature steam is one of the hardest things to produce with electricity. It's a key part of Heineken's goal to hit net zero carbon emissions by 2040 while also being a win for Portugal, which aims to reduce greenhouse gas pollution 55 percent by 2030. 

The system will be hands-off for Heineken, as EDP will take care of building and running it, and Rondo will supply the battery technology. "This project not only helps us reduce our reliance on conventional energy, it shows how practical innovation and strong partnerships can deliver meaningful improvements across our supply chain," said Heineken VP Magne Setnes.  

This article originally appeared on Engadget at https://www.engadget.com/general/your-next-heineken-beer-may-be-brewed-with-steam-from-a-100mwh-heat-battery-130045925.html?src=rss

Bees reportedly stopped Meta from building a nuclear-powered AI data center

Meta had plans to build an AI data center in the US that relies on nuclear power — it even already knew where it wanted the facility to be built. According to the Financial Times, though, the company had to scrap its plans, because the a rare bee species was discovered on the land reserved for the project. Company chief Mark Zuckerberg was reportedly ready to close a deal with an existing nuclear power plant operator that would provide emissions-free energy to the plant. The Times said he told staff members at an all-hands last week that pushing through wouldn't have been possible, because the company would encounter numerous regulatory challenges due to the bees' discovery. 

Zuckerberg reportedly told his staff that Meta would've had the first nuclear-powered AI if the deal had gone ahead. It still might come true if the company could find a way, but it has to move quickly because its biggest rivals are investing in nuclear energy, as well. In September, Microsoft revealed that it intends to revive the Three Mile Island nuclear power plant to provide energy for its AI efforts. Meanwhile, Google teamed up with startup Kairos Power to build seven small nuclear reactors in the US to power its data centers starting in 2030. And then there's Amazon, which announced three agreements with different companies to build small modular reactors in mid-October. 

The Times didn't say whether Meta is looking for a new site — one that doesn't have rare bees living in its vicinity. One of its sources only said that Meta is still exploring various deals for emissions-free energy, including nuclear, to power its future AI data centers.

This article originally appeared on Engadget at https://www.engadget.com/big-tech/bees-reportedly-stopped-meta-from-building-a-nuclear-powered-ai-data-center-143050114.html?src=rss

Hyundai reveals its newest hydrogen-powered vehicle, the Initium

Hydrogen-powered vehicles haven’t really caught on as an alternative means of eco-friendly transportation. Hyundai, however, hopes to fix that with a bigger investment in the technology and its newest hydrogen-powered concept SUV called the Initium.

Hyundai announced it plans to start production on the hydrogen SUV in the first half of next year. The Initium can run approximately 404 miles on a single refueling and can also run on electric power as a backup that can be recharged from a household electricity supply. The vehicle will also make its public debut at the LA Auto Show and Auto Guangzhou in China next month. It’s not yet confirmed where the cars will be available when they go on sale so a US launch isn’t guaranteed.

The Initium may just be a concept car for now but Hyundai seems committed to bringing its newest hydrogen car to drivers quickly, even if the fuel source hasn’t made nearly as many strides towards widespread acceptance as electric options. The South Korean carmaker is planning on investing $4 billion to develop its hydrogen vehicle technology and infrastructure to meet its complete carbon neutrality goal by 2045 with cars like the Initium and the electric Ioniq 5 unveiled last year.

Hydrogen may be an efficient alternative to gasoline but it still has a ways to go to be competitive with electric vehicles (and that’s without acknowledging the continued prevalence of gasoline-powered cars). There are only 59 hydrogen charging stations in the US with most of them in California, according to the US Department of Energy. There are only a handful of carmakers who still offer a hydrogen powered option including Hyundai (the Nexo SUV) and Toyota (the Mirari). Honda used to offer a hydrogen car with The Clarity but it ended production in 2021, according to Car & Driver.

This article originally appeared on Engadget at https://www.engadget.com/transportation/evs/hyundai-reveals-its-newest-hydrogen-powered-vehicle-the-initium-192235417.html?src=rss

Election 2024: What are the candidates’ policies on EVs and clean energy?

The US presidential election is in its final stretch. Before election day on November 5, Engadget is looking at where the candidates, Kamala Harris and Donald Trump, stand on the most consequential tech issues of our day.

While the environment and climate change are standard fare for elections, the 2024 campaign has put a surprising amount of focus on EVs. Cars and trucks are some of the biggest contributors to global warming, spewing millions of tons of greenhouse gasses into the atmosphere every year. So it’s no shock many believe transitioning from traditional combustion engine vehicles to electric will be key to reining in climate change. Of course, an electric car is only as clean as the energy used to charge its batteries, so the Biden administration has also put a lot of effort into expanding clean-energy initiatives in the US. Kamala Harris is widely expected to continue Biden’s work promoting EV adoption and clean energy technology. While Donald Trump has, unsurprisingly, run on a promise to undo it all.

On the campaign trail, Harris hasn’t announced any new major policy initiatives regarding EVs or clean energy. Mostly her comments on the matter have been broad but seek to build on the work done by the Biden administration. Between the Infrastructure Investment and Jobs Act and the Inflation Reduction Act (IRA), the government invested hundreds of billions of dollars in charging stations, EV tax credits, EV manufacturing, wind and solar.

Earlier in her career, as a senator from California and as a candidate in 2020’s presidential primary, Harris staked out a particularly aggressive stance on EVs and clean energy and made them a core part of her political identity. She supported the Green New Deal and was a cosponsor of the Zero-Emission Vehicles Act of 2019, which would have required all passenger vehicles sold in the US to be zero emissions by 2040.

Harris has since backed off many of those stronger proposals but remains a staunch proponent of using federal resources to build out EV and clean-energy infrastructure. She was the tie-breaking vote for the IRA, which included directives to reduce carbon emissions by 40 percent by 2030 and included $370 billion for wind, solar, battery and EV production. Much of the $1.1 trillion IRA money remains unspent, but the administration has sped up efforts to use those funds ahead of the election.

That money has been used to expand charging station infrastructure, begin transitioning the USPS to electric delivery vehicles and increase the amount of electricity produced by wind and solar. Through investments and tax breaks, IRA funds have been used to encourage companies to manufacture more EVs, solar panels, batteries and related components in the US. That includes $100 million announced in May for small- and medium-sized car companies to upgrade their factories for EV production. Harris and Biden have also talked up the fact that the IRA has created 170,000 clean-energy jobs in just one year. The administration also placed stiff tariffs on EVs (100 percent) and solar cells (50 percent) imported from China.

Another key component of the legislation are consumer tax credits for the purchase of electric heat pumps, rooftop solar, batteries and EVs. The EV tax credit also comes with specific requirements regarding vehicle eligibility to encourage US manufacturing throughout the supply chain. Buyers can only claim the credit if the car was assembled in the US, has a certain percentage of battery components built in North America and a minimum amount of minerals extracted either in the United States or a country it has a free trade agreement with, or that have been recycled in North America. And each year those requirements increase, ultimately reaching 100 percent of battery components in 2029 and 80 percent of critical minerals in 2027.

It might seem glib, but Trump’s policies regarding EVs and clean energy can essentially be boiled down to lifting regulations and “drill, baby, drill.” The former president has said repeatedly he would repeal almost all of the Biden administration’s rules regarding emissions, fuel standards and the environment. He also suggested he might get rid of the EV tax credit, which he tried and failed to do during his first term, claiming it unfairly influenced the market, primarily benefited the rich and increased our reliance on China. Considering the price cap on eligible vehicles and requirements regarding component and mineral sourcing, that argument seems on shaky ground. Since securing Elon Musk’s endorsement, Trump has softened some of his anti-EV rhetoric. However, he’s given no indication he’s actually reversed any of his positions.

Trump has also said he will immediately rescind new fuel efficiency and emissions standards established by the Biden administration. He has argued the efficiency requirements are simply impossible for gasoline-powered cars to meet and effectively create a mandate that 67 percent of auto sales in the US be EVs by 2032.

Trump has been even more hostile to clean-energy initiatives. Neither his platform nor the Republican Party’s official platform document mention solar energy at all. And wind energy is only mentioned on the Trump site to deride the Biden administration’s “insane wind subsidies” and generally dismiss windmills as dangerous and inefficient. The bulk of the Trump campaign’s energy policies are focused on expanding oil and natural-gas drilling and investing in nuclear power plants. But he is unlikely to try to end all the IRA’s clean energy and EV initiatives as they often lead to job creation in red states.

In general, Donald Trump is skeptical of climate change and efforts to limit humans’ impact on the environment. He has pledged to withdraw from the Paris Climate Accord (again) and called for building hundreds of new power plants, including coal, hydro and nuclear, but wind and solar farms are noticeably absent from his plan for American energy independence.

This article originally appeared on Engadget at https://www.engadget.com/transportation/evs/election-2024-what-are-the-candidates-policies-on-evs-and-clean-energy-133030889.html?src=rss

Latest UN report demands ‘unprecedented’ emissions cuts to salvage climate goals

The United Nations' Environmental Program has released a new report with yet more dire news about our odds of avoiding climate disaster caused by greenhouse gas emissions. According to this assessment, the current trajectory of international commitments will see the planet's temperature increasing 2.6 degrees Celsius or more over the course of this century. That amount of temperature change would lead to more catastrophic and life-threatening weather events.

UN members are due to submit their latest Nationally Determined Contributions ahead of the COP30 conference in Brazil next year. The NDCs lay out each country's plan for reduced greenhouse gas emissions. One part of the NDCs are to reach the goal set by the Paris Agreement to limit global temperature increases to 1.5 degrees Celsius, and one part targets keeping global temperature increases to within a less ideal 2 degrees Celsius. While the report says it is technically possible to reach the Paris Agreement goal, much larger actions will be required to cut emissions by the necessary amount. 

"Increased deployment of solar photovoltaic technologies and wind energy could deliver 27 percent of the total emission reduction potential in 2030 and 38 percent in 2035," the report gives as an example of what's still needed. "Action on forests could deliver around 20 percent of the potential in both years."

"Every fraction of a degree avoided counts in terms of lives saved, economies protected, damages avoided, biodiversity conserved and the ability to rapidly bring down any temperature overshoot," UN Environment Program Executive Director Inger Andersen wrote in the report's forward.

International collaboration, government commitments and financial contributions will also be essential for getting back on track to either the 2-degree or 1.5-degree goals. "G20 nations, particularly the largest-emitting members, would need to do the heavy lifting," the report reads.

If all of this sounds familiar, that's probably because the UN has issued the same stark warnings in each of its annual reports on emissions for several years now. And other reports have echoed their calls, such as damning findings earlier this year that just 57 companies are responsible for 80 percent of carbon dioxide emissions worldwide.

This article originally appeared on Engadget at https://www.engadget.com/science/latest-un-report-demands-unprecedented-emissions-cuts-to-salvage-climate-goals-223450262.html?src=rss