What happens when solar panels die?

By the end of 2024, the world will have nearly 2,000 Gigawatts of solar generation capacity in service. Each panel is made of silicon, glass, various polymers, aluminum, copper and an assortment of other metals that capture the sun’s energy. It’s a rule of thumb that, barring damage, a panel will last for up to 30 years before it needs to be replaced. But what happens to all of those raw materials when the current crop of solar panels becomes obsolete? Surely, we’re not just wasting it all, are we?

Received wisdom suggests solar panels last for around 30 years, but that’s not the whole story here. “30 years is our best guess,” explained Garvin Heath of the National Renewable Energy Laboratory (NREL). NREL found there was a higher rate of failures at the start of a panel’s life, often due to manufacturing or installation faults. In midlife, only a handful of panels fail. Then the statistics begin to climb northward the closer to the three decade mark you get but, even so, the number of panels that break are “less than one percent” of the total in operation at that time.

Matt Burnell is the founder of ReSolar, a British startup looking into reusing, repowering and recycling solar panels. As part of his work, Burnell visited a 40,000 panel array solar farm where 200 of the panels were broken during installation. “I took about 50 from that site, tested them to see their value for reuse [and] generation capacity,” he said, most of which were within the “tolerance range of the manufacturer.” Essentially, for the odd crack in the glass or bump on the frame — which may cause problems down the line — the panels were otherwise perfectly functional.

If a panel has survived its birth and installation, then the biggest thing that kills solar panels is the weather. Heath said a common cause is extreme weather events damaging the panel, or even just regular, aggressive weather causing things to degrade. Sadly, once a panel is broken, it’s often not worth the effort to repair.

So panels deemed “broken” during manufacture or installation may still be very capable of making power from the sun. But there are also plenty of panels that are being withdrawn from service after 25 or 30 years, even if they aren't broken in any meaningful sense. There's a fairly simple reason solar farms don't allow these panels to soak up rays until they simply cease to function.

The key issue is efficiency loss, which is when panels aren’t able to generate as much power as they did when first installed. Most solar panels are made with laminated adhesive layers that sit between the glass and the solar cells to hold them together and aid rigidity. Sun exposure can cause those laminated layers to discolor, reducing the amount of light that can reach the cells. That diminishes the energy-generation capacity, which is a problem for large commercial farms.

“Manufacturer's warranty their [solar] modules’ performance for a 30-year period,” explained Garvin Heath. For instance, a maker will pledge that its panels will be at least 80-percent efficient for the bulk of its expected three-decade service life. These warranties give large utility-scale customers confidence in what they’re buying, and at the point that term has expired, it’s often far more cost-effective to simply junk and replace them.

Power grids have a limited number of interconnections, essentially the on-ramp that enables them to push power to the grid. Each interconnection has a hard upper limit in terms of the power it can send, so solar farms need to generate the maximum permitted electricity at all times. “[Even when] they’re working within warranty performance, the opportunity cost of having a module producing [more] power on your interconnection is quite valuable,” said Heath.

ReSolar’s Matt Burnell used an example of a 10 Megawatt solar farm in the UK that had a 15 Megawatt interconnection. “10 years ago, they could only fit 10 megawatts into the space that they had [...] but with newer and more efficient modules, it’s now financially viable for them to strip the asset down and rebuild it.” “You have these big pension funds looking at this from a spreadsheet,” looking for ways to better maximize their investment. The end result is that all of these otherwise fine panels are junked. “When you think about the embedded carbon of bringing [the panels] over [from China]” said Burnell “and then they go into the waste stream [...] seems mad.”

Even if panels could be repaired to full efficiency,it’s not likely solar panel repair shops will be opening in droves. “There’s a serious question around the labor costs of testing and repairing versus just buying a new panel,” said Burnell. He added in another example of panels that had to be taken down to address fire safety legislation, which were similarly at risk of being discarded because the effort to repurpose them was too great. To reduce waste, ReSolar actually wound up collecting and sending on a consignment of those panels to Ukraine for use in a hospital.

Close up of a damaged solar panel.
Matt Burnell / ReSolar

Another rule of thumb is that only one in 10 solar panels is recycled, with the remaining nine sent to landfills. There is no standard method for tracking a panel’s eventual destination, and it’s not clear how such a system would be implemented. But there’s a risk landfills are about to be overwhelmed with the volume of panels that’ll be coming down from roofs. The Los Angeles Times, for instance, reported on the coming glut of panels in California after the state’s push to get more solar installed from 2006 onwards.

The legal situation is barely patchwork, with Grist describing things in 2020 as the “wild west,” since only Washington has any sort of mandatory legislation. Decommissioned solar panels are covered by federal solid and hazardous waste rules, dependent on the materials used in their construction. If a panel includes heavy metals like lead and cadmium, then they can’t be sent to a general landfill, lest their poisons leech into the soil. But that often just means those panels are redirected to landfills that are designed to handle specialist waste.

The EPA is, at present, looking at developing rules that would standardize the recycling process for solar panels and lithium batteries. But while there are no federal mandates for recycling, or even tough legislation at the state level, the situation is far from ideal. A small fraction of the panels are actually sent to recycling centers, the rest left to an uncertain fate. As Heath points out, the risk is that while recycling is uneconomical and unavailable, we’ll see huge boneyards of working solar panels, left piled up while the situation changes.

In the UK and Europe, solar panels are covered by the Waste from Electrical and Electronic Equipment directive, or WEEE. The rules oblige supplying companies to collect and recycle discarded panels, or to shoulder the cost for another entity to do so. It means that, hopefully, we won’t see tons more panels being dumped to landfills, but also means it’s often going to be more economical to send working panels to recycling rather than repurposing them.

Image of two people examining damaged solar panels for potential recycling.
Matt Burnell / ReSolar

If you want to free up the raw materials lurking inside a solar panel, then there are two approaches. There’s the mechanical way, in which you can shred the components, which is both simpler and more wasteful: it can recover glass and metal, but little else. Or there are thermal and chemical approaches that seek to separate the components, enabling more of the rarer metals to be recovered.

“Existing recyclers have traditional markets that their economics are built around, so glass recyclers look at a module and say ‘wow, a module is 80 percent glass by weight, I know what to do with that,” said Heath. “With the materials inside, there are more precious metals with higher value,” he said, “but they’re mixed in with the plastic polymer layers [...] which are hard to separate economically.” Consequently, the silicon, silver and copper embedded in the cells are often ground down into bulk and abandoned.

The IEA’s 2024 report on panel recycling looked into how these mechanical methods aren’t great for material qualities. “The outputs of mechanical processing are usually not very pure and better yields of high-quality materials [...] especially silicon and silver, should be targeted,” it said. It added that often these recycling processes aren’t optimized to run solar panels, and so “there is frequently some downgrading of recovered material quality,” hardly a great step on the road to circularity.

It’s also hard to know what goes into a solar panel. “The variation in materials [found in solar panels] is wild,” said ReSolar’s Matt Burnell. The litany of manufacturers don’t yet have any obligation to share their raw material data, although new regulations will change that soon. Until then, it’s difficult for recyclers to know what they’ll be pulling out of the panels they’re looking to process.

As well as recyclers not knowing the composition of the panels, there’s the risk of noxious chemicals being added to expedite some processes. Antoine Chalaux is the general manager of ROSI Solar, a specialist solar panel recycler in France. He talked about the inclusion of chemicals like Teflon and antimony, both of which are toxic and cannot be released into the atmosphere. “We’ve developed our recycling processes to capture [them],” he explained, “but we’re pushing [manufacturers] to use it less [in future].”

Burnell believes that the industry is really at the “very dawn” of solar recycling but is confident that with investment today, solutions will be quickly found in the very near future. “We’ve got this massive lead-in time,” he said “so we know what’s coming onto the market today, and we know what’s coming into the system in 25 to 30 years.” The real ticking clock is for the glut of panels that were installed in the early 2010s that will start entering the waste stream in the next decade.

Right now, ROSI’s processes aren’t as cheap as other recyclers, and Chalaux knows that it can be a problem. “Right now, there’s no economic reason for companies to [recycle with us], but there’s the question of image,” he said. “All of the manufacturers and owners of PV projects want a good story for the end of life for their panels.” The other benefit of this process, however, is to produce high-purity recycled materials that can be used by local manufacturers.

Concept image of NREL's laser-welded solar panel.
Graphic by Al Hicks / NREL

One step toward a more recyclable solar panel might be to eliminate the use of those adhesive polymers in its construction. If a panel could just use sheets of glass with the solar cells sandwiched inside, it would be a lot easier to deconstruct. Not to mention you’d likely get a longer and better performance out of them, since there would be no polymer layers to discolor.

Thankfully, a team from the US National Renewable Energy Laboratory (NREL) has demonstrated that such a product can exist. Rather than gluing the layers together, femtosecond lasers weld the front and back panels of glass to each other. The solar cells are sandwiched inside, held by the bonding of the glass to its sibling, and nothing else. And when the panel eventually reaches its end of life, which may be a lot longer than 30 years, it can just be recycled by shattering the glass.

The project, led by Dr. David Young, says that if the proposals are accepted, we could see a commercial version of the panel within two to three years. He added that the rigidity offered by welding will be just as sturdy and waterproof as panels using polymer layers. Unfortunately, by that point, we’ll have decades upon decades of panels made using the old system that we’ll still need to deal with. And until we get a cost-effective, scalable way to recycle them, the answer to the question ‘What happens to solar panels when they die?’ will be ‘nothing good.’

This article originally appeared on Engadget at https://www.engadget.com/science/what-happens-when-solar-panels-die-140019832.html?src=rss

Self-storage rooftops will become a nationwide 100MW+ solar farm

Electrek reports that a solar energy company is renting 8.5 million square feet of roof space from the National Storage Affiliates Trust’s (NSA) buildings for its newest solar panel project.

The commercial and community solar developer Solar Landscape’s new rooftop solar panel grid on the NSA’s 1,052 self-storage facilities and properties across 42 states and Puerto Rico are expected to produce at least 100 megawatts of solar capacity. The NSA, headquartered in Greenwood Village, Colorado, is one of the nation’s largest self-storage operators with brands like iStorage, Move It, Northwest and SecurCare.

These solar energy panels won’t just generate power for the NSA’s facilities. The panels will also provide clean power to nearby businesses and homes for a discounted price.

One of the challenges of implementing solar energy is finding enough space for the solar panels. These panels can take up a lot of space, like the Noor Abu Dhabi solar plant that set a world record in 2019 with 3.2 million solar panels taking up over 3 square miles of space.

Solar Landscape and the NSA may have found an interesting solution to solar panel projects’ space problem. If this partnership is successful, it could inspire similar deals for other communities looking to benefit from solar power technology.

This article originally appeared on Engadget at https://www.engadget.com/science/self-storage-rooftops-will-become-a-nationwide-100mw-solar-farm-223004138.html?src=rss

China claims to have already reached its 2030 clean energy goal

In some good news for the environment, China has reached a clean energy goal six years sooner than expected. In 2020, President Xi Jinping set a goal to have at least 1,200 gigawatts of clean energy sources by 2030. In a new statement, China's National Energy Administration claims the country has reached 1,206 gigawatts, thanks to 25 gigawatts of turbines and panels added last month, Bloomberg reports.

This milestone is critical for China, the world's biggest polluter, which produces about 12.7 metric tons of emissions produced annually as of 2023, The New York Times reports. For context, the United States is second with 5.9 billion tons. However, China is spending more on clean energy than every other country, but it still has a long way to go. So far, solar and wind have generated 14 percent of the country's energy in 2024.

China is working to expand this number with a range of projects that include renewable energy. In June, it was announced that state-owned China Three Gorges Renewables Group will invest 80 billion yuan ($11 billion) in a base using solar, wind and coal to generate electricity. The plant will be built in Inner Mongolia and get 135 gigawatts of the 435 gigawatts China has devoted to desert projects by 2030. We'll have to see how much of a negative offset the coal aspect will cause as the plan progresses.

This article originally appeared on Engadget at https://www.engadget.com/china-claims-to-have-already-reached-its-2030-clean-energy-goal-122012187.html?src=rss

Oxford scientists’ new light-absorbing material can turn everyday objects into solar panels

Oxford University scientists may have solved one of the greatest hindrances of expanding access to solar energy. Scientists from the university’s physics department have created an ultra-thin layer of material that can be applied to the exterior of objects with sunlight access in place of bulky silicon-based solar panels.

The ultra-thin and flexible film is made by stacking layers of light-absorbing layers of perovskite that are just over one micron thick. The new materials are also 150 times thinner than a traditional silicon wafer and can produce 5 percent more energy efficiency than traditional, single-layer silicon photovoltaics, according to a statement released by Oxford University.

Dr. Shauifeng Hu, a postdoctoral fellow at Oxford’s physics department, says he believes “this approach could enable the photovoltaic devices to achieve far greater efficiencies, exceeding 45 percent.”

This new approach to solar energy technology could also reduce the cost of solar energy. Due to their thinness and flexibility, they can be applied to almost any surface. This reduces the cost of construction and installation and could increase the number of solar energy farms producing more sustainable energy.

This technology, however, is still in the research stage and the university doesn’t mention the long-term stability of the newly designed perovskite panels. Going from 6 to 27 percent solar energy efficiency in five years is an impressive feat but stability has always been limited compared to photovoltaic technology, according to the US Department of Energy. A 2016 study in the science journal Solar Energy Materials and Solar Cells also noted that perovskite can provide “efficient, low-cost energy generation” but it also has “poor stability” due its sensitivity to moisture.

Solar energy has also become a cheaper power option just over the last decade. The cost of solar photovoltaic technology has dropped by 90 percent in the last 10 years, according to the Global Change Data Lab.

New solar energy farms are popping up all over the world. The US Department of Energy announced earlier this month its turning an 8,000-acre piece of land that once housed parts of the nuclear weapons program known as the Manhattan Project into a solar farm. Last month, Google invested in a Taiwanese solar company to build a 1 gigawatt pipeline in the region.

This article originally appeared on Engadget at https://www.engadget.com/science/oxford-scientists-new-light-absorbing-material-can-turn-everyday-objects-into-solar-panels-200410760.html?src=rss

ChargePoint’s new adapter claims to work with all EVs, regardless of make or model

ChargePoint has released a new EV connector designed to work with "any" EV, regardless of its charging architecture without requiring drivers to have a specialized adapter. In a press release announcing the development, ChargePoint said Omni Port is "designed to support vehicles that are already on the road as well as EVs coming to market."

ChargePoint said it will begin rolling out Omni Port to select new models of its AC and DC charging stations at no cost. The technology can also be retrofitted into existing ChargePoint stations at an unspecified, "nominal" cost. To use Omni Port, customers can enter their vehicle model into the ChargePoint app or pick the appropriate connector from the charging station screen if they don't use the app.

The United States doesn't have a formal standard for electric vehicle charging, but informally, Tesla's North American Charging Standard (NACS) has become the default for many companies on the manufacturing side. ChargePoint began rolling out support for the NACS connector in 2023.

This article originally appeared on Engadget at https://www.engadget.com/transportation/evs/chargepoints-new-adapter-claims-to-work-with-all-evs-regardless-of-make-or-model-182107079.html?src=rss

A Manhattan Project nuclear weapons site is being turned into a giant solar farm

The US Department of Energy (DOE) recently announced plans to turn land that previously housed aspects of the Manhattan Project into a 1 GW solar farm. For the uninitiated, the Manhattan Project was a top-secret and successful effort to develop nuclear weapons during the 1940s.

This particular renovation is being conducted at the former home of the Hanford nuclear testing facility, otherwise known as Site W, which is in Washington state. This site housed the world’s first full-scale plutonium production reactor. Plutonium made at this location was used in the very first atomic bomb and the Fat Man bomb that was dropped on Nagasaki, Japan.

The location certainly is intriguing, but so is the transformation project. This 580-square mile section of semi-arid desert could end up housing the largest solar project in the country, if built to the announced capacity. This record currently belongs to the Edwards Sanborn Solar and Energy Storage project in California, which generates 875 megawatts of solar power.

The DOE has teamed up with Hecate Energy to repurpose the 8,000-acre site. This is part of the Biden-Harris administration’s Cleanup to Clean Energy initiative that launched last year. This program is tasked with repurposing DOE-owned land for clean energy generation. This program has already added around 90 GW of solar capacity to the grid, which is enough to power 13 million homes.

This isn’t quite a done deal yet. The DOE and Hecate Energy still have to negotiate for a realty agreement and the government could cancel these negotiations at any time.

This is good news, but we still have some catching up to do with regard to Europe. The US produces around 5.6 percent of its energy via solar, but the EU recently shot up to 9.1 percent. However, trends are moving upward in both regions.

This article originally appeared on Engadget at https://www.engadget.com/a-manhattan-project-nuclear-weapons-site-is-being-turned-into-a-giant-solar-farm-173047830.html?src=rss

A Manhattan Project nuclear weapons site is being turned into a giant solar farm

The US Department of Energy (DOE) recently announced plans to turn land that previously housed aspects of the Manhattan Project into a 1 GW solar farm. For the uninitiated, the Manhattan Project was a top-secret and successful effort to develop nuclear weapons during the 1940s.

This particular renovation is being conducted at the former home of the Hanford nuclear testing facility, otherwise known as Site W, which is in Washington state. This site housed the world’s first full-scale plutonium production reactor. Plutonium made at this location was used in the very first atomic bomb and the Fat Man bomb that was dropped on Nagasaki, Japan.

The location certainly is intriguing, but so is the transformation project. This 580-square mile section of semi-arid desert could end up housing the largest solar project in the country, if built to the announced capacity. This record currently belongs to the Edwards Sanborn Solar and Energy Storage project in California, which generates 875 megawatts of solar power.

The DOE has teamed up with Hecate Energy to repurpose the 8,000-acre site. This is part of the Biden-Harris administration’s Cleanup to Clean Energy initiative that launched last year. This program is tasked with repurposing DOE-owned land for clean energy generation. This program has already added around 90 GW of solar capacity to the grid, which is enough to power 13 million homes.

This isn’t quite a done deal yet. The DOE and Hecate Energy still have to negotiate for a realty agreement and the government could cancel these negotiations at any time.

This is good news, but we still have some catching up to do with regard to Europe. The US produces around 5.6 percent of its energy via solar, but the EU recently shot up to 9.1 percent. However, trends are moving upward in both regions.

This article originally appeared on Engadget at https://www.engadget.com/a-manhattan-project-nuclear-weapons-site-is-being-turned-into-a-giant-solar-farm-173047830.html?src=rss

Tesla warns against wet towel charging trick two months too late

Tesla car culture is full of hacks and shortcuts, some more effective than others. One, known as the “wet towel” trick, required the Tesla Charging department — or whatever remains of it — to publicly tell customers to knock it off.

The “wet towel” trick involves wrapping a damp, cool cloth around a Supercharger cable handle as a way to presumably speed up the charging time. The Supercharger has temperature monitors that keep it from overheating as it charges Tesla vehicles. Some Tesla owners believe that cooling down the charging handle will trick the temperature monitor into topping off their vehicles faster.

Here's the problem, at least in Tesla's telling: If the sensor in the charging handle believes that the temperature is lower than it actually is while it’s charging, the towel-wrapped charger can create a "risk of overheating or damage" according to the company.

This may sound like the biggest “duh” statement in tech news history but it’s taken more than two months for Tesla to warn its customers not to do the “wet towel” trick on their cars, even after it became a well known “hack” on other auto news websites and Reddit forums. The official Tesla Charging account on X posted a warning on Wednesday in response to an article from InsideEVs.com explaining the dangerous car charging trick.

This kind of epic communication breakdown is what happens when a major automaker doesn’t have a public relations department. Tesla dissolved its entire PR team in 2020 and Elon Musk publicly refused to hire one on his X account the following year saying he didn’t want to “spend money on advertising & manipulating public opinion,” according to Electrek.

This article originally appeared on Engadget at https://www.engadget.com/tesla-warns-against-wet-towel-charging-trick-two-months-too-late-190237430.html?src=rss

Rivian opens its first Charging Outpost, a crunchy not-gas station near Yosemite

Rivian just opened its first EV charging rest stop 24 miles outside of Yosemite National Park, complete with bathrooms, a lounge with a small library, a water refill station, free coffee and (not free) “make your own” trail mix. Only Rivian owners will be able to make use of the five DC fast chargers at the Rivian Yosemite Charging Outpost, but the other amenities are open to anyone.

The Charging Outpost is located in Groveland, California near the park’s west entrance and takes the place of an abandoned gas station. The shop area will be open from 7AM to 7PM, while the bathrooms and chargers will be available 24/7. It’s the first time Rivian has ventured into this kind of infrastructure, building on its growing network of regular charging sites — several of which are situated near Yosemite. The EV maker has 58 Waypoint charging sites, which support any electric vehicle that uses the standard J1772 plug, around the Yosemite Valley, and a Rivian-only Adventure charging site near the park’s east entrance.

Rivian says it has plans for more Charging Outposts “around national parks and other high-traffic areas across the country.” The first such building was designed with the intention of keeping waste to a minimum, and its retaining wall was made using materials from the old parking lot and sidewalk. It’s fitted with solar panels and has a passive cooling design that’s meant to reduce the need for AC or heating.

Beyond Charging Outposts, Rivian plans to eventually have over 3,500 of its Adventure Network DC fast chargers available in 600 sites across the US and Canada, on top of roughly 10,000 Level 2 chargers that will be open to the public.

This article originally appeared on Engadget at https://www.engadget.com/rivian-opens-its-first-charging-outpost-a-crunchy-not-gas-station-near-yosemite-152039298.html?src=rss

Environmental groups accuse Amazon of ‘distorting the truth’ in latest clean-energy claim

On Wednesday, Amazon claimed that it reached its goal of sourcing all its power from clean energy sources in the past year. If taken at face value, the announcement would mean it hit the milestone seven years ahead of schedule, which would be a monumental achievement. But environmental experts speaking to The New York Times, including a group of concerned Amazon employees, warn that the company is “misleading the public by distorting the truth.”

The company’s claim of achieving 100 percent clean electricity is based in part on billion-dollar investments in over 500 solar and wind initiatives. The company’s logic is that the energy these projects generate equals the electricity its data centers consume — ergo, even Steven.

But the renewable energy sources it uses for those calculations are fed into a general power grid, not exclusively into Amazon’s operations. Environmental experts caution that the company is using “accounting and marketing to make itself look good,” as The New York Times put it.

“Amazon wants us to think of its data centers as surrounded by wind and solar farms,” the group Amazon Employees for Climate Justice wrote in a statement to The NYT. “[But] the reality is the company is heavily investing in data center expansions fueled by West Virginian coal, Saudi Arabian oil and Canadian fracked gas.”

Green plains filled with large windmills. Blue sky.
Amazon

Clean energy experts say Amazon’s inclusion of renewable energy certificates (RECs) in its calculations can be highly misleading. This is because if any power plants on a grid burn fossil fuels, businesses can’t know that the grid uses only clean energy. The Amazon employee group told The New York Times that, after subtracting the company’s use of RECs in its calculations, its clean-energy investment was “just a fraction of what was publicized.”

“Buying a bunch of RECs doesn’t help anything,” Leah Stokes, associate professor of environmental politics at UC Santa Barbara, told The NYT. “You just have to be investing in real projects.”

To be fair, any movement toward clean energy should be applauded. Amazon still received a “B” grade from the nonprofit CDP (formerly the Carbon Disclosure Project), which was lower than Google and Microsoft’s “A” but still a passing grade. The problem comes when companies use the smoke and mirrors more often associated with marketing and PR to mislead the public into believing they’re doing more for the environment than they are.

“A company needs to actually outline, what are the sources that you are accounting for in that calculation?” Simon Fischweicher, a CDP director, told The NYT.

With the meteoric rise of AI and the financial pressures to compete in this new gold rush, companies are now reshuffling their decks and finding new ways to meet their climate goals. However, if that shakeup offers less tangible movement and more weasel words and sketchy logic, then that’s creating a new problem on top of their alleged solutions for a genuine crisis.

This article originally appeared on Engadget at https://www.engadget.com/environmental-groups-accuse-amazon-of-distorting-the-truth-in-latest-clean-energy-claim-170633705.html?src=rss