Eyes-on: University of Pennsylvania’s TitanArm exoskeleton (video)

Eyes-on: University of Pennsylvania's TitanArm exoskeleton (video)

TitanArm already took home silver in a competition for senior projects at the University of Pennsylvania, and now the team behind it is visiting Orlando to compete in the Intel-sponsored Cornell Cup for embedded design. We stopped by the showroom and snagged a few minutes with the crew to take a look at their creation: an 18-pound, untethered, self-powered exoskeleton arm constructed for less than $2,000.

To wield the contraption, users attach the cable-driven mechanical appendage to themselves with straps from a military-grade hiking backpack, and guide it with a thumbstick on a nunchuck-like controller. If a load needs to be held in place, the wearer can jab a button on the hand-held control to apply a brake. A Beagle Bone drives the logic for the setup, and it can stream data such as range of motion wirelessly to a computer. As for battery-life, they group says the upper-body suit has previously squeezed out over 24 hours of use without having to recharge.

Filed under: ,

Comments

UPenn’s TitanArm exoskeleton prototype makes light work of heavy lifting (video)

UPenn's TitanArm exoskeleton prototype makes light work of heavy lifting (video)

It's no wonder people are interested in exoskeletons. Not only do they tap into our lust for the technology of science fiction movies, but among other applications, can make a significant impact on the lives of those living with disabilities. While many offer leg support, a team from University of Pennsylvania recently took silver in an engineering competition for its TitanArm prototype, a powered upper-body exoskeleton that, as the picture above shows, allows you to out-rep anyone at the gym.

Designed to be lightweight and cheap to produce, the robotic bicep upgrade uses a (mostly) aluminum frame, battery-powered DC motor, cable drive system, racket braking and thumbstick controller for movement, with a BeagleBone board supervising the electronics that pull it all together. The group at UPenn imagines TitanArm could be employed as a lifting aid, but more importantly, in healthcare applications like increasing mobility or physical therapy -- sensors and other data from the exoskeleton could even allow docs to monitor patients remotely. More info on the project can be found at the source link, while a video below shows TitanArm in use and outlines the hardware that makes those heavy hammer curls a cinch.

Filed under: , ,

Comments

Source: TitanArm

UPenn robots spring into action, save wooden hero (video)

Image

Like you, we assumed that the University of Pennsylvania robotics team wouldn't be able to top the wow factor of that amazing video of Quadrocopters playing the James Bond theme, but if this doesn't best it, it sure comes close. Marvel as a quadrocopter, RC truck and a team of scale shipping-containers-turned-autonomous-robotic-boats band together to aid a wood artist's model. It's quite the site to behold, and according to the University, all the researchers have to do is tell the boats the final shape -- in this case a curved, floating bridge. Video's after the break.

Filed under:

Comments

Alt-week 9.1.12: growing bones, repairing voices, and a pair of satellites

Alt-week peels back the covers on some of the more curious sci-tech stories from the last seven days.

Alt-week 9.1.12: growing bones, repairing voices, and a pair of satellites

There's definitely more than a touch of a biological theme to proceedings this week. In fact, so much so that we thought we might well end up with enough ingredients to make our own cyborg. Or rather, a light-responding canine cyborg with a really cool voice. Yep, science and technology is working hard to make all of these things possible -- albeit independently. If science ever does do the right thing, and pool its resources on such a project, you can thanks us for the tip off. This is Alt-week.

Continue reading Alt-week 9.1.12: growing bones, repairing voices, and a pair of satellites

Filed under: , , ,

Alt-week 9.1.12: growing bones, repairing voices, and a pair of satellites originally appeared on Engadget on Sat, 01 Sep 2012 17:00:00 EDT. Please see our terms for use of feeds.

Permalink   |   | Email this | Comments

X-RHex Lite robot grows a tail, always lands on its feet (video)

XRHex Lite robot grows a tail, always lands on its feet video

By far the greatest challenge for robots with legs is staying upright when the going gets rough. A team at the University of Pennsylvania's Kod*lab has a hunch that we don't need extra smarts to make that happen -- just an extra appendage. The upgraded X-RHex Lite (XRL) carries a tail that will swing in the right direction to keep the robot upright if it's caught out by a fall, much like a cat. That's impressive for a nearly 18-pound robot (the previous Tailbot was 0.4 pounds), but we're pretty sure no feline has six springy legs; the XRL can crash to the ground and still get back up like it ain't no thing, which gives it a fudge factor others don't have. We don't know if the hexapod critter will lead to more than further experiments. If there are fewer stuck rovers on future exploration missions, though, we'll know who to thank.

Continue reading X-RHex Lite robot grows a tail, always lands on its feet (video)

Filed under: ,

X-RHex Lite robot grows a tail, always lands on its feet (video) originally appeared on Engadget on Mon, 30 Jul 2012 22:41:00 EDT. Please see our terms for use of feeds.

Permalink IEEE Spectrum  |  sourceUniversity of Pennsylvania  | Email this | Comments

Researchers use 3D printer, sugar, to create a fake artery network for lab-grown tissue

Researchers use 3D printer, sugar, to create a fake artery network for lab-grown tissue

Printing a chocolate heart is easy enough, but how about an actual organ? There are folks working on it, but it turns out those veins of yours aren't exactly a breeze to replicate. Researchers at the University of Pennsylvania and MIT may have found a semi-sweet solution -- dissolving a sugar lattice in a batch of living Jell-O. The research team uses a RepRap 3D printer and a custom extruder head to print a filament network composed of sucrose, glucose and dextran which is later encased in a bio-gel containing living cells. Once the confectionery paths are dissolved, they leave a network of artery-like channels in their void. Tissue living in the gel can then receive oxygen and nutrients through the hollow pipes.

The research has been promising so far, and has increased the number of functional liver cells the team has been able to maintain in artificial tissues. These results suggest the technique could have future research possibilities in developing lab-grown organs. MIT Professor Sangeeta Bhatia, who helped conduct the effort, hopes to push the group's work further. "More work will be needed to learn how to directly connect these types of vascular networks to natural blood vessels while at the same time investigating fundamental interactions between the liver cells and the patterned vasculature. It's an exciting future ahead." Scientists at other labs could also get their mitts on the sweet templates since they're stable enough to endure shipping. Head past the break for a video of the innard infrastructure.

Continue reading Researchers use 3D printer, sugar, to create a fake artery network for lab-grown tissue

Researchers use 3D printer, sugar, to create a fake artery network for lab-grown tissue originally appeared on Engadget on Tue, 03 Jul 2012 04:07:00 EDT. Please see our terms for use of feeds.

Permalink Hack a Day  |  sourceNature, University of Pennsylvania  | Email this | Comments

Scientists use metal and silicon to create invisibility cloak (no, you can’t wear it)

Scientists use metal and silicon to create invisibility cloak (no, you can't wear it)

In the quest to achieve that much-desired invisibility cloak, scientists have redirected light, used heat monitoring and even gone underwater -- with varying degrees of success. The latest attempt at this optical illusion is from engineers at Stanford and the University of Pennsylvania, who have developed a device that can detect light without being seen itself. When the ratio of metal to silicon is just right, the light reflected from the two materials is completely canceled out. The process, called plasmonic cloaking, controls the flow of light to create optical and electronic functions while leaving nothing for the eye to see. Scientists envision this tech being used in cameras -- plasmonic cloaking could reduce blur by minimizing the cross-talk between pixels. Other applications include solar cells, sensors and solid-state lighting -- human usage is conspicuously absent on that list.

Scientists use metal and silicon to create invisibility cloak (no, you can't wear it) originally appeared on Engadget on Tue, 22 May 2012 15:44:00 EDT. Please see our terms for use of feeds.

Permalink Nanotechnology Today, TG Daily  |   | Email this | Comments